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A B S T R A C T

This paper considers the problem of making inferences about the effects of a program on multi-
ple outcomes when the assignment of treatment status is imperfectly randomized. By imperfect
randomization we mean that treatment status is reassigned after an initial randomization on
the basis of characteristics that may be observed or unobserved by the analyst. We develop a
partial identification approach to this problem that makes use of information limiting the extent
to which randomization is imperfect to show that it is still possible to make nontrivial inferences
about the effects of the program in such settings. We consider a family of null hypotheses in
which each null hypothesis specifies that the program has no effect on one of many outcomes
of interest. Under weak assumptions, we construct a procedure for testing this family of null
hypotheses in a way that controls the familywise error rate – the probability of even one false
rejection – in finite samples. We develop our methodology in the context of a reanalysis of
the HighScope Perry Preschool program. We find statistically significant effects of the program
on a number of different outcomes of interest, including outcomes related to criminal activity
for males and females, even after accounting for imperfections in the randomization and the
multiplicity of null hypotheses.

1. Introduction

This paper considers the problem of making inferences about the effects of a program on multiple outcomes when assignment
of treatment status is imperfectly randomized. By imperfect randomization we mean that treatment status is reassigned after an
initial randomization on the basis of characteristics that may be observed or unobserved by the analyst. As noted by Heckman
et al. (2010a), such post-randomization reassignment of treatment status often occurs in real-world field experiments. Since these
characteristics may affect outcomes, differences in outcomes between the treated and untreated groups may be due to imperfections
in the randomization instead of the treatment itself.
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We develop a partial identification approach to this problem that makes use of information limiting the extent to which
andomization is imperfect to show that it is still possible to make nontrivial inferences about the effects of the program in such
ettings. We consider a family of null hypotheses in which each null hypothesis specifies that the program has no effect on one of
everal outcomes of interest. Under weak assumptions, we construct a procedure for testing this family of null hypotheses in a way
hat controls the familywise error rate – the probability of even one false rejection – in finite samples.

Our methodology depends on a detailed understanding of the way in which treatment status was assigned. For this reason, we
evelop it in the context of a specific application – a reanalysis of the HighScope Perry Preschool program – and our assumptions
re tightly connected to the specific way in which treatment status was assigned in this program. We emphasize, however, that
he underlying approach applies not only to this program, but more generally to the analysis of other experiments with imperfect
andomization.

The HighScope Perry Preschool program is an influential preschool intervention that targeted disadvantaged African–American
outh in Ypsilanti, Michigan in the early 1960s. The reported beneficial long-term effects of the program are a cornerstone in the
rgument for early childhood intervention in the United States. Most analyses of the HighScope Perry Preschool program have
ailed to account for the limited sample size of the study, the multiplicity of null hypotheses being tested, as well as the way in
hich treatment status in the program was imperfectly randomized. For some of these criticisms, see, e.g., Herrnstein and Murray

1994), and Hanushek and Lindseth (2009). Two notable exceptions are Heckman et al. (2010a) and, more recently, Heckman and
arapakula (2019), who both acknowledge these concerns and address them in different ways than we do here. We postpone a
etailed comparison of our approach with theirs to Remarks 2.1 and 4.5 below, where we emphasize that both approaches do not
ddress post-randomization reassignment of treatment status on the basis of unobserved characteristics in the fashion we do. In
articular, as explained further in Section 2 below, a key part of the intervention required families to be available for weekly home
isits, and some families for whom this was not possible were removed from the treatment group and placed in the control group.
n our analysis, we treat the availability of families for these weekly home visits as an unobserved characteristic that may be related
o potential outcomes. With our approach, we still find, like the previous studies, statistically significant effects of the program on
wide variety of outcomes, including outcomes related to criminal activity for males and females, and thereby contribute to the

umulative evidence of the favorable effects of this intervention.
The remainder of the paper is organized in the following way. Section 2 describes the HighScope Perry Preschool program,

ocusing on the way in which treatment status was reassigned after the initial randomization on the basis of characteristics both
bserved and unobserved by the analyst. Section 3 formally describes our setup and assumptions, which are motivated by the
escription in the preceding section of the way in which treatment status was assigned in the program. We present our testing
rocedures in Section 4. We first discuss the problem of testing a single (joint) null hypothesis, before considering the problem of
esting multiple null hypotheses. Section 5 presents the results of applying our methodology to the data from the HighScope Perry
reschool program. Section 6 concludes.

. Empirical setting

.1. HighScope Perry Preschool program

The HighScope Perry Preschool program was a prominent early childhood intervention conducted at the Perry elementary school
n Ypsilanti, Michigan during the early 1960s. Beginning at age three and lasting for two years, treatment consisted of a 2.5-hour
reschool program on weekdays during the school year supplemented by weekly home visits from teachers. The preschool curriculum
as organized around the concept of active learning, guiding students through key learning experiences with open-ended questions.
ocial and emotional skills were also fostered. See Heckman et al. (2013). The purpose of the weekly home visits was to involve
he parents in the learning process. Further details about the program are described in Schweinhart et al. (1993).

Program eligibility was determined by the child’s Stanford–Binet IQ score and a measure of the family’s socio-economic status.
he measure of socio-economic status used was constructed as a weighted linear combination of father’s skill level and educational
ttainment and the number of rooms per person in the family’s home. With a few exceptions, those with Stanford–Binet IQ scores
ess than 70 or greater than 85 were excluded from the program.1 Likewise, with a few exceptions, those with a sufficiently high

socio-economic status were excluded from the program.
The study enrolled a total of five cohorts over the years 1962–1965; two cohorts were admitted in the first year and one in each

subsequent year. The first cohort is exceptional in that treated children only received one year of treatment beginning at age four.
Altogether 123 children from 104 families were admitted to the program. Siblings are distributed among families as follows: 82
singletons, 17 pairs, 1 triple and 1 quadruple.

Follow-up interviews were conducted yearly from 3 to 15 years old. Additional interviews were conducted in three waves that
cover persons in age intervals centered at ages 19, 27, and 40 years. Program attrition remained low through age 40. Indeed, over
91% of the participants were accounted for in the final survey. Moreover, two-thirds of those who did not were dead. Interviews
covered a variety of outcomes. See Schweinhart et al. (1993) and Heckman et al. (2010a) for further discussion. For the purposes
of our analysis, we focus on outcomes that have attracted considerable attention in the literature on the HighScope Perry Preschool
program: IQ, achievement test scores, educational attainment, criminal behavior, and employment at three different stages of the
life cycle.

1 An IQ of 85 was the U.S. Black average in the time period of our study.
2
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Fig. 1. Graphical description of the randomization procedure.
Notes: T and C refer to treatment and control groups respectively. Blue circles represent males. Pink circles represent females. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

.2. Randomization procedure

Our methodology relies on a detailed understanding of the randomization procedure. According to Schweinhart et al. (1993),
reatment status was assigned for each cohort of children in the following way:

Step 1: Younger siblings of earlier program participants were assigned the same treatment status as their elder siblings.
Step 2: Remaining participants were ranked according to their Stanford–Binet IQ scores at study entry. Those with the
same Stanford–Binet IQ scores were ordered at random with all orderings equally likely. Two groups were defined by the
odd-ranked and even-ranked participants.
Step 3: Some participants were exchanged between the two groups in order to ‘‘balance’’ gender and the socio-economic
status scores while keeping Stanford–Binet IQ scores roughly constant.
Step 4: The two groups defined in this way were labeled treatment and control with equal probability.
Step 5: Some participants with single mothers who were working and unavailable for the weekly home visits were moved
from the treatment group to the control group.

This procedure is depicted graphically in Fig. 1. The rationale for assigning younger siblings of earlier program participants to the
ame treatment status as their elder siblings was to avoid ‘‘spillovers’’ within a family, that might weaken the estimated treatment
ffect. For our purposes, it is most important to note that Step 5 depends on a characteristic we do not observe – whether the family
as a single mother who is working and unavailable for the weekly home visits – but was observed and used by those determining
reatment status (at least for families who were offered treatment). To the extent that the availability of the mother is related to the
utcomes of interest, it is important to account for this feature of the randomization procedure in analyzing experimental outcomes.

Note that, by symmetry, we may without loss of generality interchange Steps 3 and 4 of the randomization procedure without
ffecting the distribution of treatment status. Thus, the randomization procedure may be described equivalently as follows:

Step 1′: Younger siblings of earlier program participants were assigned the same treatment status as their elder siblings.
Step 2′: Remaining participants were ranked according to their Stanford–Binet IQ scores at study entry. Those with the same
Stanford–Binet IQ score were ordered at random with all orderings equally likely. Two groups were defined by the odd-ranked
and even-ranked participants.
Step 3′: The two groups defined in this way were labeled treatment and control with equal probability.
Step 4′: Some participants were exchanged between the treatment and control groups in order to ‘‘balance’’ gender and
socio-economic status score while keeping Stanford–Binet IQ score roughly constant.
Step 5′: Some participants with single mothers who were working and unavailable for the weekly home visits were moved
from the treatment group to the control group.
3



Journal of Econometrics 243 (2024) 105683J. Heckman et al.

t
c
v
f
F
d
p
r

3

3

This observation will be useful below when modeling the distribution of treatment status.

Remark 2.1. Heckman and Karapakula (2019) interpret ‘‘balance’’ in Step 3 to be defined in terms of Hotelling’s multivariate
wo-sample 𝑡-squared statistic being less than some threshold. They also discipline Step 5 by assuming that there were (at most) a
ertain number of participants with single, working mothers for whom special accommodations could be made for the weekly home
isits, and that the analyst chose which families to accommodate at random. Both the threshold and the number of participants
or whom special accommodations could be made are treated as unknown, but can be partially identified from the observed data.
or testing procedures that are also valid in finite samples based on this different model of the way in which treatment status was
etermined, we refer the reader to Heckman and Karapakula (2019, 2021). We emphasize, however, that our approach allows, in
articular, that working mothers were unavailable for these weekly home visits for reasons that may be important in that they are
elated to potential outcomes. ■

. Setup and assumptions

.1. Setup

We index outcomes of interest by 𝑘 ∈ 𝐾, families by 𝑗 ∈ 𝐽 and siblings in the 𝑗th family by 𝑖 ∈ 𝐼𝑗 . Denote by 𝑌𝑖,𝑗,𝑘(0) the 𝑘th
(potential) outcome of the 𝑖th sibling in the 𝑗th family if the 𝑗th family were not treated and by 𝑌𝑖,𝑗,𝑘(1) the 𝑘th (potential) outcome
of the 𝑖th sibling in the 𝑗th family if the 𝑗th family were treated. Let 𝐷𝑗 be the treatment status of the 𝑗th family. Denote by 𝑍𝑖,𝑗
the vector of observed characteristics of the 𝑖th sibling in the 𝑗th family used in determining treatment status and by 𝑈𝑖,𝑗 a scalar
summary of the unobserved characteristics of the 𝑖th sibling in the 𝑗th family used in determining treatment status that we will
describe further below. In our empirical analysis,

𝑍𝑖,𝑗 = (𝐺𝑖,𝑗 , 𝑆𝐸𝑆𝑗 , 𝐼𝑄𝑖,𝑗 ,𝑊𝑖,𝑗 ) ,

where 𝐺𝑖,𝑗 is the gender of the 𝑖th sibling in the 𝑗th family, 𝑆𝐸𝑆𝑖,𝑗 is the measure of socio-economic status of the 𝑗th family, 𝐼𝑄𝑖,𝑗
is the Stanford–Binet IQ score at study entry of the 𝑖th sibling in the 𝑗th family, and 𝑊𝑖,𝑗 is the cohort or wave of the 𝑖th sibling in
the 𝑗th family. In this notation, the 𝑘th observed outcome of the 𝑖th sibling in the 𝑗th family is

𝑌𝑖,𝑗,𝑘 = 𝐷𝑗𝑌𝑖,𝑗,𝑘(1) + (1 −𝐷𝑗 )𝑌𝑖,𝑗,𝑘(0) .

Recall that only the characteristics of the eldest sibling in each family eligible to participate matter for determining treatment
status. We will therefore drop the dependence on 𝑖 and henceforth simply write 𝑍𝑗 in place of 𝑍𝑖∗ ,𝑗 where

𝑖∗ = argmin
𝑖∈𝐼𝑗

𝑊𝑖,𝑗 .

In light of the description of the randomization procedure in Section 2.2, we interpret 𝑈𝑖,𝑗 as an indicator of whether the 𝑖th sibling
in the 𝑗th family has a mother who (at the date of enrollment of the eldest eligible sibling) was working and unavailable for weekly
home visits. Since this variable does not depend on 𝑖, we will henceforth drop the dependence on 𝑖 and simply write 𝑈𝑗 . Further
define 𝑀𝑊𝑗 to be an indicator for whether the 𝑗th family has a mother who (at the date of enrollment of the eldest sibling) was
working. Although this variable is not used directly in the assignment of treatment status, we must, of course, have 𝑈𝑗 = 0 whenever
𝑀𝑊𝑗 = 0.

It is useful to introduce the following shorthand notation. Define

𝐷 = (𝐷𝑗 ∶ 𝑗 ∈ 𝐽 )

𝑍 = (𝑍𝑗 ∶ 𝑗 ∈ 𝐽 )

𝑈 = (𝑈𝑗 ∶ 𝑗 ∈ 𝐽 )

𝑀𝑊 = (𝑀𝑊𝑗 ∶ 𝑗 ∈ 𝐽 ) .

For 𝑑 ∈ supp(𝐷) and 𝑘 ∈ 𝐾, further define

𝑌𝑘 = (𝑌𝑖,𝑗,𝑘 ∶ 𝑖 ∈ 𝐼𝑗 , 𝑗 ∈ 𝐽 )

𝑌𝑘(𝑑) = (𝑌𝑖,𝑗,𝑘(𝑑𝑗 ) ∶ 𝑖 ∈ 𝐼𝑗 , 𝑗 ∈ 𝐽 ) .

Denote by 𝑃 the distribution of

((𝑌𝑘(𝑑) ∶ 𝑑 ∈ supp(𝐷), 𝑘 ∈ 𝐾), 𝐷,𝑍,𝑈,𝑀𝑊 ) ,

which is assumed to lie in a class of distributions 𝛺, i.e.,

((𝑌𝑘(𝑑) ∶ 𝑑 ∈ supp(𝐷), 𝑘 ∈ 𝐾), 𝐷,𝑍,𝑈,𝑀𝑊 ) ∼ 𝑃 ∈ 𝛺 .

The assumptions we impose on 𝛺 are presented in Section 3.2 below. For 𝑘 ∈ 𝐾, let
4

𝜔𝑘 = {𝑃 ∈ 𝛺 ∶ 𝑌𝑘(𝑑) does not depend on 𝑑} .
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In this notation, our goal is to test the family of null hypotheses

𝐻𝑘 ∶ 𝑃 ∈ 𝜔𝑘 for 𝑘 ∈ 𝐾 (1)

in a way that controls in finite samples the familywise error rate – the probability of even one false rejection.2 More formally, let
𝐾0(𝑃 ) denote the set of true null hypotheses, i.e.,

𝐾0(𝑃 ) = {𝑘 ∈ 𝐾 ∶ 𝑃 ∈ 𝜔𝑘} ,

and define

𝐹𝑊 𝐸𝑅𝑃 = 𝑃 {reject ≥ 1 hypothesis 𝐻𝑘 with 𝑘 ∈ 𝐾0(𝑃 )} .

In this notation, our goal is to test the family of null hypotheses (1) in a way that satisfies

𝐹𝑊 𝐸𝑅𝑃 ≤ 𝛼 for all 𝑃 ∈ 𝛺 (2)

for some pre-specified value of 𝛼 ∈ (0, 1).
Before proceeding to a formal description of our testing procedure, it is useful to model the distribution of 𝐷. Let 𝐷̃ be a vector

of treatment assignments produced from Steps 1′-3′ above, i.e., according to the initial randomization before any reassignment of
treatment status. Let

𝛿 ∶ {0, 1}|𝐽 | × supp(𝑍,𝑈 ) → {0, 1}|𝐽 |

be the rule used to exchange participants from the treatment group to the control group in Steps 4’ and 5’. It is helpful to decompose
𝛿 into two functions in the following way. Let

𝛿1 ∶ {0, 1}|𝐽 | × supp(𝑍) → {0, 1}|𝐽 |

be the rule used to exchange participants from the treatment group to the control group in Step 4’. In an analogous fashion, let

𝛿2 ∶ {0, 1}|𝐽 | × supp(𝑈 ) → {0, 1}|𝐽 |

be the rule used to move participants with single mothers who were working and unavailable for the weekly home visits from the
treatment group to the control group in Step 5’. In this notation, 𝐷 can be written as the composition of two functions:

𝐷 = 𝛿2(𝛿1(𝐷̃, 𝑍), 𝑈 ) = 𝛿(𝐷̃, 𝑍, 𝑈 ) .

Remark 3.1. By requiring that our testing procedure satisfy criterion (2), all of the null hypotheses rejected by our procedure
are false with probability at least 1 − 𝛼. The recent literature on multiple testing has considered error rates less stringent than the
familywise error rate (see, e.g., Romano et al., 2010). One example is the 𝑚-familywise error rate – the probability of 𝑚 or more
false rejections for some 𝑚 ≥ 1. Another example is the false discovery proportion – the ratio of false rejections to total rejections
(defined to be zero when there are no rejections at all) – where 𝑃 {𝐹𝐷𝑃 > 𝛾} for some 𝛾 ∈ [0, 1), and here 𝐹𝐷𝑃 is the false discovery
proportion. With such error rates, one is only guaranteed that, with probability at least 1−𝛼, ‘‘most’’ of the null hypotheses rejected
by the procedure are false. However, such procedures may have much greater ability to detect false null hypotheses. This feature
may be especially valuable when the number of null hypotheses under consideration is very large. See Romano and Shaikh (2006a,b)
and Romano et al. (2008) for a discussion of some procedures for control of such error rates. We do not pursue such error rates
here because in our application the number of null hypotheses under consideration is relatively small. ■

3.2. Assumptions

In this section, we describe the assumptions we impose on 𝛺. These assumptions are connected tightly to our description of the
randomization procedure in Section 2.2. We first state our assumptions formally and then relate them briefly to our description of
the way in which treatment status was assigned.

Some of our assumptions are most succinctly stated in terms of groups of transformations. Here, we use the term group as it is used
in mathematics. See, e.g., Dummit and Foote (1999) or any other standard reference. To this end, let 𝐆 be the set of permutations
of |𝐽 | elements. This set forms a group under the usual composition of functions. Define the action of 𝑔 ∈ 𝐆 on |𝐽 |-dimensional
vectors 𝑣 by

𝑔𝑣 = (𝑣𝑔(1),… , 𝑣𝑔(|𝐽 |)) .

et 𝐇 = {−1, 1}|𝐽 |. This set forms a group under component-wise multiplication. Define the action of ℎ ∈ 𝐇 on |𝐽 |-dimensional
ectors 𝑣 by the rule that the 𝑗th element of ℎ𝑣 equals 𝑣𝑗 if ℎ𝑗 = 1 and 1 − 𝑣𝑗 if ℎ𝑗 = −1. For 𝑧 ∈ supp(𝑍), let

𝐇𝑧 = {ℎ ∈ 𝐇 ∶ ℎ𝑗 = ℎ𝑗′ whenever 𝑤𝑗 = 𝑤𝑗′} .

2 The null hypotheses specified in (1) are sometimes referred to as ‘‘sharp’’ null hypotheses to distinguish them from ‘‘weak’’ null hypotheses that specify
nstead that 𝐸[𝑌𝑘(𝑑)] does not depend on 𝑑. For a discussion of how randomization tests may be used to test such null hypotheses, see, e.g., Chung and Romano
5

2013), Bugni et al. (2018) and Bai et al. (2022a).
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Here, 𝑤𝑗 is the component of 𝑧 corresponding to the wave in which the eldest eligible sibling in the 𝑗th family was enrolled in the
program. In other words, 𝐇𝑧 is the subgroup of 𝐇 that is constant across families whose treatment status was determined in the
same wave. Using this notation, we may now state the assumptions that will underlie our analysis.

Assumption 3.1. For any 𝑃 ∈ 𝛺, (𝑌𝑘(𝑑) ∶ 𝑑 ∈ supp(𝐷), 𝑘 ∈ 𝐾) ⟂⟂ 𝐷|𝑍,𝑈 under 𝑃 .

Assumption 3.2. For any 𝑔 ∈ 𝐆, 𝛿1(𝑔𝑑, 𝑔𝑧) = 𝑔𝛿1(𝑑, 𝑧).

Assumption 3.3. For any ℎ ∈ 𝐇𝑧, ℎ𝛿1(𝑑, 𝑧) = 𝛿1(ℎ𝑑, 𝑧).

Assumption 3.4. The 𝑗th component of 𝛿2(𝑑, 𝑢) equals zero if 𝑑𝑗 = 1 and 𝑢𝑗 = 1; otherwise, 𝑗th component of 𝛿2(𝑑, 𝑢) equals 𝑑𝑗 .

Assumption 3.5. For any 𝑃 ∈ 𝛺, 𝑈𝑗 = 0 if 𝑀𝑊𝑗 = 0 w.p.1. under 𝑃 .

Our first assumption simply states that our description of the way in which treatment status was assigned in Section 2.2 is
accurate in the sense that the only variables used to determine treatment status that affect potential outcomes are 𝑍 and 𝑈 . Hence,
potential outcomes are independent of treatment status conditional on 𝑍 and 𝑈 . Assumption 3.2 is a mild equivariance restriction
that will be satisfied provided that the way in which treatment status is reassigned in Step 4’ does not depend on the order of
the participants themselves. Informally, it says that ‘‘ordering of participants doesn’t matter’’. Assumption 3.3 further imposes
a mild symmetry requirement on the way in which treatment status is reassigned in Step 4’. Informally, it says that ‘‘the ‘odd’
and ‘even’ labels don’t matter’’. Assumption 3.4 simply defines the function 𝛿2 so that it agrees with Step 5’ in the description of
the randomization procedure in Section 2.2, i.e., participants in the treatment group with single mothers who were working and
unavailable for the weekly home visits are moved to the control group. Finally, Assumption 3.5 imposes the logical restriction that
𝑈𝑗 and 𝑀𝑊𝑗 described in Section 3.1, i.e., 𝑈𝑗 = 0 whenever 𝑀𝑊𝑗 = 0. In other words, for a family to have a single mother who is
working and unavailable for the weekly home visits, it must obviously be the case that the family has a mother who is working.

4. Testing procedures

In Section 4.2 below, we develop methods for testing a single (joint) null hypothesis of the form

𝐻𝐿 ∶ 𝑃 ∈ 𝜔𝐿 , (3)

where

𝜔𝐿 =
⋂

𝑘∈𝐿
𝜔𝑘

for 𝐿 ⊆ 𝐾, in a way that controls the usual probability of a Type I error at level 𝛼. In Section 4.3, we extend these methods to test
the family of null hypotheses (1) so that it satisfies (2).

Our methods for testing (3) in a way that controls the usual probability of a Type I error will be based on the general principle
behind randomization tests of exploiting certain symmetries in the distribution of the observed data. Here, by a symmetry in the
distribution of the observed data we mean that there is a group of transformations of the observed data that leave its distribution
unchanged whenever the null hypothesis is true. When this is the case, it is possible to construct a test of the null hypothesis that
controls the usual probability of a Type I error in finite samples. Perhaps the most familiar example of a randomization test is
a permutation test, which may be used to test the null hypothesis that two i.i.d. samples from possibly distinct distributions are
in fact from the same underlying distribution, but, as explained in Section 15.2 of Lehmann and Romano (2005), the principle
applies more generally. Recently, randomization tests have been employed in a wide variety of settings, including settings with
staggered treatment adoption (Shaikh and Toulis, 2021), experiments with covariate-adaptive randomization (Bugni et al., 2018;
Bai et al., 2022b), experiments with interference (Basse et al., 2019), settings with a ‘‘small’’ number of clusters (Canay et al., 2017,
2021; Cai et al., 2023), regression kink designs (Ganong and Jäger, 2018) and regression discontinuity designs (Canay and Kamat,
2017). The main challenge in applying these ideas in our setting lies in finding symmetries in the distribution of treatment status
that persist despite the complicated way in which treatment status was assigned in the HighScope Perry Preschool program. These
symmetries are developed in Lemma 4.1, which is presented in Section 4.1 below, by exploiting Assumptions 3.2–3.3 in conjunction
with Assumption 3.4.

4.1. A useful lemma

In order to describe the symmetries in the distribution of the observed data that we will exploit formally, we require some further
notation. For (𝑧, 𝑢) ∈ supp(𝑍,𝑈 ), let 𝐆𝑧,𝑢 be the subgroup of 𝐆 that only contains 𝑔 ∈ 𝐆 such that

𝑔(𝑗) = 𝑗′ ⟹ (𝑧𝑗 , 𝑢𝑗 ) = (𝑧𝑗′ , 𝑢𝑗′ ) .

In particular, 𝑔 ∈ 𝐆𝑍,𝑈 will therefore act on a |𝐽 |-dimensional binary vector of treatment statuses by permuting treatment status
among those families with the same observed and unobserved characteristics (defined by the characteristics of the eldest child in
the case of families with multiple children). For (𝑧, 𝑢) ∈ supp(𝑍,𝑈 ), let
6

𝐇𝑧,𝑢 = {𝑢ℎ ∶ ℎ ∈ 𝐇𝑧} ,
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where the 𝑗th element of 𝑢ℎ equals ℎ𝑗 if 𝑢𝑗 = 0 and 1 if 𝑢𝑗 = 1. The action of ℎ ∈ 𝐇𝑧,𝑢 on |𝐽 |-dimensional vectors 𝑣 is defined as it
as for 𝐇 and 𝐇𝑧. In particular, ℎ ∈ 𝐇𝑍,𝑈 will therefore act on a |𝐽 |-dimensional binary vector of treatment statuses by possibly

‘flipping’’ treatment status for all families whose treatment status was determined in the same wave except for those with mothers
ho were working and unavailable for the weekly home visits (at the date of enrollment of the eldest eligible sibling). Using this
otation, we may now state the lemma.

emma 4.1. Let 𝑔 ∈ 𝐆𝑍,𝑈 and ℎ ∈ 𝐇𝑍,𝑈 . Suppose 𝐷̃ is distributed as described in Section 3. Then, the following statements hold:

(i) If Assumptions 3.2 and 3.4 hold, then

𝑔𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈
𝑑
= 𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈 . (4)

(ii) If Assumptions 3.3 and 3.4 hold, then

ℎ𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈
𝑑
= 𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈 . (5)

(iii) If Assumptions 3.2–3.4 hold, then

ℎ𝑔𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈
𝑑
= 𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈 . (6)

Proof. In order to establish (i), first note that by definition of 𝐷̃ and 𝐆𝑍,𝑈 , we have that

𝑔𝐷̃|𝑍,𝑈
𝑑
= 𝐷̃|𝑍,𝑈 . (7)

Next, note for any 𝑔′ ∈ 𝐆, we have that

𝛿(𝑔′𝑑, 𝑔′𝑧, 𝑔′𝑢) = 𝛿2(𝛿1(𝑔′𝑑, 𝑔′𝑧), 𝑔′𝑢)

= 𝛿2(𝑔′𝛿1(𝑑, 𝑧), 𝑔′𝑢)

= 𝑔′𝛿2(𝛿1(𝑑, 𝑧), 𝑢)

= 𝑔′𝛿(𝑑, 𝑧, 𝑢) , (8)

where the first and fourth equalities follow from the definition of 𝛿, the second equality follows from Assumption 3.2, and the third
equality follows from Assumption 3.4. Finally, for any 𝐴 ⊆ {0, 1}|𝐽 |, note that

𝑃 {𝑔𝛿(𝐷̃, 𝑍, 𝑈 ) ∈ 𝐴|𝑍,𝑈} = 𝑃 {𝛿(𝑔𝐷̃, 𝑔𝑍, 𝑔𝑈 ) ∈ 𝐴|𝑍,𝑈}

= 𝑃 {𝛿(𝑔𝐷̃,𝑍,𝑈 ) ∈ 𝐴|𝑍,𝑈}

= 𝑃 {𝛿(𝐷̃, 𝑍, 𝑈 ) ∈ 𝐴|𝑍,𝑈} ,

where the first equality follows from (8), the second follows from the definition of 𝐆𝑍,𝑈 , and the third from (7).
In order to establish (ii), first choose ℎ∗(ℎ′) ∈ 𝐇𝑧 for each ℎ′ ∈ 𝐇𝑧,𝑢 such that 𝑢ℎ∗(ℎ′) = ℎ′. Next, note that by the definition of

𝐷̃ and 𝐇𝑍 , we have that

ℎ∗(ℎ)𝐷̃|𝑍,𝑈
𝑑
= 𝐷̃|𝑍,𝑈 . (9)

Further observe that Assumption 3.4 implies for any ℎ′ ∈ 𝐇𝑧,𝑢 that

ℎ′𝛿2(𝑑, 𝑢) = 𝛿2(ℎ∗(ℎ′)𝑑, 𝑢) . (10)

Hence, for any ℎ′ ∈ 𝐇𝑧,𝑢,

ℎ′𝛿(𝑑, 𝑧, 𝑢) = ℎ′𝛿2(𝛿1(𝑑, 𝑧), 𝑢)

= 𝛿2(ℎ∗(ℎ′)𝛿1(𝑑, 𝑧), 𝑢)

= 𝛿2(𝛿1(ℎ∗(ℎ′)𝑑, 𝑧), 𝑢)

= 𝛿(ℎ∗(ℎ′)𝑑, 𝑧, 𝑢) , (11)

where the first and fourth equalities follow from the definition of 𝛿, the second equality follows from (10), and the third equality
follows from Assumption 3.3. Finally, for any 𝐴 ⊆ {0, 1}|𝐽 |, note that

𝑃 {ℎ𝛿(𝐷̃, 𝑍, 𝑈 ) ∈ 𝐴|𝑍,𝑈} = 𝑃 {𝛿(ℎ∗(ℎ)𝐷̃, 𝑍, 𝑈 ) ∈ 𝐴|𝑍,𝑈}

= 𝑃 {𝛿(𝐷̃, 𝑍, 𝑈 ) ∈ 𝐴|𝑍,𝑈} ,

where the first equality follows from (11) and the second follows from (9).
Part (iii) follows immediately from parts (i) and (ii), which completes the proof. ■

In Sections 4.2 and 4.3 below, we employ the symmetries in the distribution of treatment status described in Lemma 4.1 above
to develop tests of (1) and (3).
7
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4.2. Testing a single (joint) null hypothesis

In order to describe our test of the single (joint) null hypothesis (3) for 𝐿 ⊆ 𝐾, we first require a test statistic. To this end, define

𝑋𝐿 = ((𝑌𝑘 ∶ 𝑘 ∈ 𝐿), 𝐷,𝑍)

nd let

𝑇𝐿 = 𝑇𝐿(𝑋𝐿)

e a test statistic for testing (3). Note that we impose the mild requirement that 𝑇𝐿 only depends on 𝑋𝐿. In particular, we assume
hat it does not depend on 𝑌𝑘 with 𝑘 ∉ 𝐿. We assume further that large values of 𝑇𝐿 provide evidence against the null hypothesis.

We now describe the construction of a critical value for our test. For this purpose, the following lemma is useful:

emma 4.2. If 𝑃 ∈ 𝜔𝐿 and Assumption 3.1 holds, then

(𝑌𝑘 ∶ 𝑘 ∈ 𝐿) ⟂⟂ 𝐷|𝑍,𝑈

under 𝑃 .

roof. Consider 𝑃 ∈ 𝜔𝐿. Assumption 3.1 implies that

(𝑌𝑘(𝑑) ∶ 𝑑 ∈ supp(𝐷), 𝑘 ∈ 𝐿) ⟂⟂ 𝐷|𝑍,𝑈

under 𝑃 . Since 𝑃 ∈ 𝜔𝐿, we have further that 𝑌𝑘(𝑑) = 𝑌𝑘 for all 𝑘 ∈ 𝐿. The desired result thus follows. ■

In order to describe an important implication of Lemma 4.2, it is useful to define

ℎ𝑔𝑋𝐿 = ((𝑌𝑘 ∶ 𝑘 ∈ 𝐿), ℎ𝑔𝐷,𝑍)

for 𝑔 ∈ 𝐆𝑍,𝑢 and ℎ ∈ 𝐇𝑍,𝑢. If Assumptions 3.1–3.4 hold, then Lemmas 4.1–4.2 together imply that

(𝑋𝐿, 𝑈 )|𝑍,𝑈
𝑑
= (ℎ𝑔𝑋𝐿, 𝑈 )|𝑍,𝑈 (12)

whenever 𝑃 ∈ 𝜔𝐿, 𝑔 ∈ 𝐆𝑍,𝑈 and ℎ ∈ 𝐇𝑍,𝑈 . This symmetry suggests that we can construct a critical value with which to compare
our test statistic by re-evaluating it at ℎ𝑔𝑋𝐿 for each 𝑔 ∈ 𝐆𝑍,𝑈 and ℎ ∈ 𝐇𝑍,𝑈 . As mentioned previously, 𝑈 is unknown, but its
possible values can be limited by Assumptions 3.4–3.5 to the set 𝐔(𝐷,𝑀𝑊 ), where

𝐔(𝑑, 𝑚𝑤) = {𝑢 ∈ {0, 1}|𝐽 | ∶ 𝑢𝑗 = 0 whenever 𝑑𝑗 = 1 or 𝑚𝑤𝑗 = 0} .

In other words, we may use as our critical value

𝑐𝐿(𝑋𝐿, 1 − 𝛼) = max
𝑢∈𝐔(𝐷,𝑀𝑊 )

𝑐𝐿(𝑋𝐿, 𝑢, 1 − 𝛼) , (13)

where

𝑐𝐿(𝑋𝐿, 𝑢, 1 − 𝛼) = inf

⎧

⎪

⎨

⎪

⎩

𝑡 ∈ 𝐑 ∶ 1
|𝐆𝑍,𝑢||𝐇𝑍,𝑢|

∑

𝑔∈𝐆𝑍,𝑢 ,ℎ∈𝐇𝑍,𝑢

𝐼{𝑇𝐿(ℎ𝑔𝑋𝐿) ≤ 𝑡} ≥ 1 − 𝛼

⎫

⎪

⎬

⎪

⎭

,

where 𝐼{⋅} is the indicator function. It is worth noting that in our setting |𝐔(𝐷,𝑀𝑊 )| = 218. This idea is formalized in the following
theorem:

Theorem 4.1. Under Assumptions 3.1–3.5, the test that rejects 𝐻𝐿 whenever

𝑇𝐿(𝑋𝐿) > 𝑐𝐿(𝑋𝐿, 1 − 𝛼) ,

where 𝑐𝐿(𝑋𝐿, 1 − 𝛼) is defined by (13) controls the usual probability of a Type I error at level 𝛼, i.e.,

𝑃 {𝑇𝐿(𝑋𝐿) > 𝑐𝐿(𝑋𝐿, 1 − 𝛼)} ≤ 𝛼

for all 𝑃 ∈ 𝜔𝐿.

Proof. Consider 𝑃 ∈ 𝜔𝐿. Define

𝜙(𝑋𝐿, 𝑢) = 𝐼{𝑇𝐿(𝑋𝐿) > 𝑐𝐿(𝑋𝐿, 𝑢, 1 − 𝛼)} .

From Assumptions 3.4 and 3.5, we have that 𝑈 ∈ 𝐔(𝐷,𝑀𝑊 ). Hence,

𝑐𝐿(𝑋𝐿, 1 − 𝛼) ≥ 𝑐𝐿(𝑋𝐿, 𝑈 , 1 − 𝛼) . (14)

It therefore suffices to show that

𝐸 [𝜙(𝑋 ,𝑈 )] ≤ 𝛼 . (15)
8
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To this end, first note under Assumptions 3.1–3.4 that it follows from Lemmas 4.1–4.2 for any 𝑔 ∈ 𝐆𝑍,𝑈 and ℎ ∈ 𝐇𝑍,𝑈 that (12)
holds under any such 𝑃 . Next, note that

𝐸𝑃

⎡

⎢

⎢

⎣

∑

𝑔∈𝐆𝑍,𝑈 ,ℎ∈𝐇𝑍,𝑈

𝜙(ℎ𝑔𝑋𝐿, 𝑈 )|𝑍,𝑈
⎤

⎥

⎥

⎦

=
∑

𝑔∈𝐆𝑍,𝑈 ,ℎ∈𝐇𝑍,𝑈

𝐸𝑃 [𝜙(ℎ𝑔𝑋𝐿, 𝑈 )|𝑍,𝑈 ]

=
∑

𝑔∈𝐆𝑍,𝑈 ,ℎ∈𝐇𝑍,𝑈

𝐸𝑃 [𝜙(𝑋𝐿, 𝑈 )|𝑍,𝑈 ]

= |𝐆𝑍,𝑈 ||𝐇𝑍,𝑈 |𝐸𝑃 [𝜙(𝑋𝐿, 𝑈 )|𝑍,𝑈 ] , (16)

n the other hand, since

𝑐𝐿(ℎ𝑔𝑋𝐿, 𝑈 , 1 − 𝛼) = 𝑐𝐿(𝑋𝐿, 𝑈 , 1 − 𝛼)

or any 𝑔 ∈ 𝐆𝑍,𝑈 and ℎ ∈ 𝐇𝑍,𝑈 , we also have that

𝐸𝑃

⎡

⎢

⎢

⎣

∑

𝑔∈𝐆𝑍,𝑈 ,ℎ∈𝐇𝑍,𝑈

𝜙(ℎ𝑔𝑋𝐿, 𝑈 )|𝑍,𝑈
⎤

⎥

⎥

⎦

≤ |𝐆𝑍,𝑈 ||𝐇𝑍,𝑈 |𝛼 . (17)

t follows from (16) and (17) that

𝐸𝑃 [𝜙(𝑋𝐿, 𝑈 )|𝑍,𝑈 ] ≤ 𝛼 ,

rom which the desired conclusion (15) follows immediately. ■

emark 4.1. Once (12) is established, the proof of Theorem 4.1 follows the usual arguments that underlie the validity of
andomization tests. See, e.g., Chapter 15 of Lehmann and Romano (2005) for a textbook discussion of such methods. Nevertheless,
e include the details of the argument for completeness. ■

emark 4.2. Note that 𝑐𝐿(𝑋𝐿, 𝑢, 1−𝛼) defined in 4.2 requires computing 𝑇𝐿(ℎ𝑔𝑋𝐿) for every 𝑔 ∈ 𝐆𝑍,𝑢 and ℎ ∈ 𝐇𝑍,𝑢. In our setting,
he sets 𝐆𝑍,𝑢 and 𝐇𝑍,𝑢 are sufficiently small that the construction of the critical value is computationally feasible. In other settings,
his may not be the case and one may need to resort to a stochastic approximation to the critical value. This can be done without
ffecting the finite-sample validity of the resulting test. See Section 15.2 of Lehmann and Romano (2005) for details. ■

emark 4.3. It is straightforward to include additional ‘‘exogenous’’ variation in the way that treatment status was reassigned.
ere, by ‘‘exogenous’’ variation we mean variation unrelated to outcomes, but used in determining treatment status. Such variation
ould be useful, for instance, if in Step 3 of the randomization procedure there was more than one way to exchange participants
cross the two groups in order to ‘‘balance’’ gender and socio-economic status scores. For example, we could allow 𝛿 to depend on
n additional random variable 𝑉 that enters 𝛿1 if

𝑔𝑉 |𝑍,𝑈
𝑑
= 𝑉 |𝑍,𝑈

or any 𝑔 ∈ 𝐆, Assumption 3.2 were strengthened so that

𝛿1(𝑔𝑑, 𝑔𝑧, 𝑔𝑣) = 𝑔𝛿1(𝑑, 𝑧, 𝑣)

or any 𝑔 ∈ 𝐆, and Assumption 3.3 were strengthened so that ℎ𝛿1(𝑑, 𝑧, 𝑣) = 𝛿1(ℎ𝑑, 𝑧, 𝑣) for any ℎ ∈ 𝐇𝑧. Under these conditions, it
ollows by arguing as in the proof of Lemma 4.1 that (6) holds, from which the rest of our arguments would follow. In particular,
ur testing procedures would remain unchanged even if we were to allow for this type of additional variation. ■

emark 4.4. An inspection of the proof of Theorem 4.1 reveals that the validity of our test hinges crucially on part (iii) of
emma 4.1. On the other hand, there is no reason to suspect that

𝑔𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈
𝑑
= 𝛿(𝐷̃, 𝑍, 𝑈 )|𝑍,𝑈

or 𝑔 ∈ 𝐆. For this reason, a test of (3) based simply on permutations from 𝐆 does not necessarily control the usual probability of a
ype I error. Nevertheless, because such a test has been applied in earlier analyses of the HighScope Perry Preschool program, we

nclude it in our comparisons below. ■

emark 4.5. In addition to the ‘‘naïve’’ permutation test described in Remark 4.4, Heckman et al. (2010a) consider a test of (3)
ased on permutations from 𝐆𝑧, where, by analogy with the definition of 𝐆𝑧,𝑢 given earlier, 𝐆𝑧 is the subgroup of 𝐆 that contains
nly 𝑔 ∈ 𝐆 such that

𝑔(𝑗) = 𝑗′ ⟹ 𝑧𝑗 = 𝑧𝑗′ .

t is possible to justify such an approach using Lemma 4.1 provided that one assumes that the way in which treatment status was
eassigned in Step 5 of the randomization procedure depended only on whether the participant had a mother who was working. If
9
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one were willing to make such an assumption, then one could simply expand 𝑍 so as to include 𝑀𝑊 and ignore the effect of 𝛿2
on treatment status (e.g., by setting all elements of 𝑈 equal to zero). Under Assumptions 3.2 and 3.4, it then follows from part (i)
of Lemma 4.1 that

𝑔𝐷|𝑍
𝑑
= 𝐷|𝑍

for 𝑔 ∈ 𝐆𝑍 . On the other hand, because 𝑀𝑊 was used in an asymmetric fashion to reassign treatment status, Assumption 3.3 is no
longer plausible, so it is not reasonable to expect parts (ii) and (iii) of Lemma 4.1 to apply. Unfortunately, the number of permutations
in 𝐆𝑍 alone is too small to be useful. Heckman et al. (2010a) therefore impose additional assumptions, such as parametric restrictions
about the way in which certain observed characteristics affect outcomes, to make use of this limited number of permutations. Note
further that the resulting approach does not have the finite-sample validity of the approach developed here. ■

4.3. Testing multiple null hypotheses

We now return to the problem of testing the family of null hypotheses (1) in a way that satisfies (2). Under Assumptions 3.2–3.5,
it is straightforward to calculate a 𝑝-value 𝑝̂𝑘 for each 𝐻𝑘 using Theorem 4.1 by simply applying the theorem with 𝐿 = {𝑘} and
computing the smallest value of 𝛼 for which the null hypothesis is rejected. The resulting 𝑝-values will satisfy

𝑃 {𝑝̂𝑘 ≤ 𝑢} ≤ 𝑢

for all 𝑢 ∈ (0, 1) and 𝑃 ∈ 𝜔𝑘. A crude solution to the multiplicity problem would therefore be to apply a Bonferroni or Holm-type
correction. Such an approach would indeed satisfy (2), as desired, but implicitly relies upon a ‘‘least favorable’’ dependence structure
among the 𝑝-values. To the extent that the true dependence structure differs from this ‘‘least favorable’’ one, improvements may be
possible. For that reason, we apply a stepwise multiple testing procedure developed by Romano and Wolf (2005) for control of the
familywise error rate that implicitly incorporates information about the dependence structure when deciding which null hypotheses
to reject. Our discussion follows that in Romano and Shaikh (2010), wherein the algorithm is generalized to allow for possibly
uncountably many null hypotheses.

In order to describe our testing procedure, we first require a test statistic for each null hypothesis such that large values of the
test statistic provide evidence against the null hypothesis. As before, we impose the requirement that the test statistic for 𝐻𝑘 depends
only on 𝑋{𝑘}. Denote such a test statistic by 𝑇𝑘(𝑋{𝑘}). Next, for 𝐿 ⊆ 𝐾, define

𝑇𝐿(𝑋𝐿) = max
𝑘∈𝐿

𝑇𝑘(𝑋{𝑘}) .

Finally, for 𝐿 ⊆ 𝐾, denote by 𝑐𝐿(𝑋𝐿, 1 − 𝛼) the critical value defined in (13) with this choice of 𝑇𝐿(𝑋𝐿).
Our testing procedure is summarized in the following algorithm:

Algorithm 4.1.

Step 1: Set 𝐿1 = 𝐾. If
max
𝑘∈𝐿1

𝑇𝑘(𝑋{𝑘}) ≤ 𝑐𝐿1
(1 − 𝛼) ,

then stop and reject no null hypotheses; otherwise, reject any 𝐻𝑘 with

𝑇𝑘(𝑋{𝑘}) > 𝑐𝐿1
(𝑋𝐿1

, 1 − 𝛼)

and go to Step 2.
⋮
Step 𝑗: Let 𝐿𝑗 denote the indices of remaining null hypotheses. If

max
𝑘∈𝐿𝑗

𝑇𝑘(𝑋{𝑘}) ≤ 𝑐𝐿𝑗
(𝑋𝐿𝑗

, 1 − 𝛼) ,

then stop and reject no further null hypotheses; otherwise, reject any 𝐻𝑘 with

𝑇𝑘(𝑋{𝑘}) > 𝑐𝐿𝑗
(𝑋𝐿𝑗

, 1 − 𝛼)

and go to Step 𝑗 + 1.
⋮

Theorem 4.2. Under Assumptions 3.1–3.5, Algorithm 4.1 satisfies (2).

Proof. The claim follows from Theorem 4.1 and arguments given in Romano and Wolf (2005) or Romano and Shaikh (2010). Since
the argument is brief, we include it here for completeness.

Suppose that a false rejection occurs. Let 𝑗 be the smallest step at which a false rejection occurs. By the minimality of 𝑗, we must
have that
10

𝐿𝑗 ⊇ 𝐾0(𝑃 ) . (18)
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It follows that

𝑐𝐿𝑗
(𝑋𝐿𝑗

, 1 − 𝛼) ≥ 𝑐𝐾0(𝑃 )(𝑋𝐾0(𝑃 ), 1 − 𝛼) . (19)

ince a false rejection occurred, we must also have that

max
𝑘∈𝐾0(𝑃 )

𝑇𝑘(𝑋{𝑘}) > 𝑐𝐿𝑗
(𝑋𝐿𝑗

, 1 − 𝛼) .

ence,

max
𝑘∈𝐾0(𝑃 )

𝑇𝑘(𝑋{𝑘}) > 𝑐𝐾0(𝑃 )(𝑋𝐾0(𝑃 ), 1 − 𝛼) ,

nd the probability of this event is bounded above by 𝛼 by Theorem 4.1. ■

emark 4.6. It is straightforward to calculate a multiplicity-adjusted 𝑝-value 𝑝̂adj𝑘 for each 𝐻𝑘 using Theorem 4.2 by simply
computing the smallest value of 𝛼 for which each null hypothesis is rejected. The resulting 𝑝-values have the property that the
procedure that rejects any 𝐻𝑘 with 𝑝̂adj𝑘 ≤ 𝛼 satisfies (2). ■

Remark 4.7. The choice of 𝑇𝑘(𝑋{𝑘}) in Algorithm 4.1 is arbitrary, but we apply it to the HighScope Perry Preschool data with
𝑇𝑘(𝑋{𝑘}) given by a Studentized difference in means between the treatment and control groups for all outcomes except cognitive
outcomes, in which case we use a Mann–Whitney 𝑈 -statistic. Of course, one could just as well use a more omnibus statistic, such
as a Kolmogorov–Smirnov statistic. ■

5. Empirical results

We now apply the methodology developed in the preceding section to the HighScope Perry Preschool data. We find that
the program has statistically significant effects on a wide range of outcomes even after controlling for (i) imperfections in the
randomization protocol and (ii) multiplicity of the null hypotheses under consideration. Recall that (i) involves (a) the way in which
treatment status was reassigned to ‘‘balance’’ certain observed characteristics as well as (b) the way in which some participants
were removed from the treatment group and placed in the control group on the basis of unobserved characteristics. We address
(i) by exploiting symmetries in the distribution of treatment status that remain valid in the presence of both (a) and (b) together
with information limiting the extent of (b). We address (ii) by demanding control of the familywise error rate, thereby eliminating
concerns about selectively reporting results for only a subset of these null hypotheses.

When applying Theorems 4.1 and 4.2 in this empirical setting, we discretize 𝑆𝐸𝑆𝑗 as an indicator denoting whether 𝑆𝐸𝑆𝑗
exceeds the median value among all families in the same wave. There is no loss of generality with this approach if we assume that
the goal of Step 3 of the randomization procedure was to ‘‘balance’’ the two groups so that their respective median 𝑆𝐸𝑆𝑗 values
were the same. We note, however, that because we exploit 𝐇𝑍,𝑢 as well as 𝐆𝑍,𝑢, our inferences would remain nontrivial even if
we were to adopt a much finer discretization of 𝑆𝐸𝑆𝑗 . Indeed, they would remain valid even if the discretization were so fine that
𝐆𝑍,𝑢 became a singleton consisting of only the identity permutation for all 𝑢 ∈ 𝐔(𝐷,𝑀𝑊 ).

Following Heckman et al. (2010a), we analyze seven conceptually distinct ‘‘blocks’’ of outcomes, each of which is of independent
interest: one is related to IQ measures, a second to achievement measures, a third to educational attainment, a fourth to criminal
activity, and three to employment at ages 19, 27, and 40. We divide the data further by gender. We correct for the multiplicity of
outcomes within each of these fourteen blocks of outcomes. Because of our limited sample size, we adopt the convention that null
hypotheses with 𝑝-values less than or equal to .10 are statistically significant.

The results of our analysis are presented in Tables 1 and 2 for males and females, respectively. The first column of each table
displays the outcome analyzed. The second column gives the age at which the outcome is measured. The third and fourth columns
contain, respectively, the mean value of the outcome for the control group and the difference in means between the treatment group
and the control group. The remaining columns present 𝑝-values from various testing procedures:

• The column under the heading ‘‘Asymp.’’ presents (multiplicity) unadjusted 𝑝-values from a one-sided test based on comparing
a Studentized difference of means with a critical value computed from a normal approximation.

• The two columns under the heading ‘‘Naïve’’ display, respectively, the unadjusted and adjusted 𝑝-values based on the naïve
application of a permutation test in this setting. In other words, these 𝑝-values are based on the unrestricted set of permutations
𝐆 rather than 𝐆𝑍,𝑢 and 𝐇𝑍,𝑢.

• The two columns under the heading ‘‘𝑈 = 0’’ display, respectively, the unadjusted and adjusted 𝑝-values derived from applying
Theorems 4.1 and 4.2 assuming that 𝐔(𝐷,𝑀𝑊 ) = {{0}|𝐽 |}, i.e., ignoring the effect of Step 5 of the randomization procedure.

• The two columns under the heading ‘‘Max-𝑈 ’’ display, respectively, the unadjusted and adjusted 𝑝-values derived from applying
Theorems 4.1 and 4.2.

Note that the ‘‘Naïve’’ 𝑝-values do not account for the imperfections in the randomization stemming from either (a) or (b) above.
For that reason, as discussed in Remark 4.4, there is no reason to suspect that these 𝑝-values are valid, but they are included here
for comparison. Note further that by construction the ‘‘Max-𝑈 ’’ (un)adjusted 𝑝-values are smaller than the ‘‘𝑈 = 0’’ (un)adjusted
𝑝-values. The ‘‘Naïve’’ (un)adjusted 𝑝-values, however, may be either larger or smaller than the ‘‘𝑈 = 0’’ (un)adjusted 𝑝-values.

Our findings are broadly consistent with those in Heckman et al. (2010a). They are summarized as follows:
11
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Table 1
Results for males.

Outcome Age Control mean Diff-in-means Asymp. 𝑝-Values

Naïve 𝑈 = 0 Max-𝑈

Unadj. Adj. Unadj. Adj. Unadj. Adj.

IQ

Stanford–Binet 4 83.08 11.83 0.000 0.000 0.001 0.001 0.001 0.008 0.008
Stanford–Binet 5 84.79 10.61 0.000 0.001 0.004 0.022 0.691 0.077 0.800
Stanford–Binet 6 85.82 5.66 0.019 0.048 0.138 0.033 0.034 0.094 0.102
Stanford–Binet 7 87.71 3.41 0.088 0.168 0.354 0.103 0.172 0.247 0.374
Stanford–Binet 8 89.05 −0.72 0.598 0.568 0.705 0.599 0.691 0.733 0.800
Stanford–Binet 9 89.03 −0.63 0.587 0.469 0.673 0.450 0.548 0.631 0.680
Stanford–Binet 10 86.03 −2.33 0.814 0.645 0.645 0.684 0.691 0.790 0.800

Achievement

CAT, Reading 14 9.00 4.93 0.076 0.076 0.118 0.017 0.035 0.036 0.086
CAT, Arithmetic 14 8.11 7.89 0.059 0.058 0.113 0.032 0.035 0.086 0.086
CAT, Language 14 6.54 7.80 0.024 0.021 0.057 0.001 0.004 0.012 0.027
CAT, Language Mechanics 14 6.96 8.59 0.020 0.014 0.042 0.006 0.007 0.023 0.035
CAT, Spelling 14 11.54 6.98 0.090 0.090 0.090 0.003 0.035 0.012 0.086

Educational HS Graduation 19 0.51 −0.03 0.592 0.595 0.595 0.614 0.674 0.704 0.716
Vocational Training Certificate ≤40 0.33 0.06 0.300 0.307 0.651 0.341 0.567 0.547 0.608

Attainment Highest Grade Completed 19 11.28 0.08 0.398 0.393 0.637 0.383 0.622 0.410 0.669
GPA 19 1.79 0.02 0.462 0.453 0.631 0.457 0.674 0.567 0.716

Crime

# Non-Juv. Arrests ≤40 11.72 −4.26 0.042 0.042 0.084 0.036 0.038 0.100 0.115
Total Crime Cost ≤40 775.90 −351.22 0.151 0.158 0.158 0.037 0.049 0.042 0.143
# Total Charges ≤40 13.38 −4.38 0.068 0.068 0.125 0.049 0.049 0.143 0.143
# Non-Victimless Charges ≤40 3.08 −1.59 0.029 0.029 0.072 0.025 0.037 0.063 0.091

Employment Current Employment 19 0.41 0.14 0.129 0.128 0.236 0.050 0.164 0.224 0.290
No Job in Past Year 19 0.13 0.11 0.893 0.888 0.888 0.901 0.901 0.922 0.922

at 19 Jobless Months in Past 2 Yrs. 19 3.82 1.47 0.783 0.768 0.831 0.821 0.849 0.873 0.890

Employment Current Employment 27 0.56 0.04 0.384 0.372 0.372 0.268 0.295 0.485 0.512
No Job in Past Year 27 0.31 −0.07 0.272 0.268 0.392 0.235 0.295 0.360 0.512

at 27 Jobless Months in Past 2 Yrs. 27 8.79 −3.66 0.063 0.062 0.118 0.020 0.020 0.036 0.051

Employment Current Employment 40 0.50 0.20 0.051 0.051 0.096 0.103 0.116 0.130 0.146
No Job in Past Year 40 0.46 −0.10 0.204 0.205 0.205 0.154 0.154 0.216 0.216

at 40 Jobless Months in Past 2 Yrs. 40 10.75 −3.52 0.085 0.079 0.108 0.064 0.116 0.070 0.146

This table reports the results for males. The sample size consists of 72 participants, 33 treated and 39 control. The Table shows seven ‘‘blocks’’ of outcomes: (1)
Stanford–Binet IQ for ages 4–10; (2) Californian Achievement Test (CAT) measured at age 14; (3) Education achievement outcomes at various ages; (4) Crime
outcomes; (5) Employment outcomes at age 19; (6) Employment outcomes at age 27; (7) Employment outcomes at age 40. The first column displays the outcome
of interest. The second column displays the age at which the outcome was surveyed. The third and fourth columns contain, respectively, the mean value of
the outcome for the control group and the difference in means between the treatment group and the control group. The fifth column displays an asymptotic
unadjusted one-sided 𝑝-value based on the Studentized difference in means. The columns under the heading ‘‘Naïve’’ display, respectively, the unadjusted and
adjusted 𝑝-values based on a naïve permutation test. The two columns under the heading ‘‘𝑈 = 0’’ display, respectively, the unadjusted and adjusted 𝑝-values
derived from applying Theorems 4.1 and 4.2 ignoring Step 5 of the randomization procedure by setting 𝐔(𝐷,𝑀𝑊 ) = {{0}|𝐽 |}. The two columns under the
eading ‘‘Max-𝑈 ’’ display, respectively, the unadjusted and adjusted 𝑝-values derived from applying Theorems 4.1 and 4.2.

Cognition: The top panels of Tables 1 and 2 present our evidence on cognitive abilities as measured by Stanford–Binet
IQ score at different ages and various California Achievement Test (CAT) scores at age 14. The ‘‘Naïve’’ adjusted 𝑝-values
suggest a statistically significant effect on Stanford–Binet IQ scores for both males and females at young ages. These findings
survive the more stringent ‘‘Max-𝑈 ’’ adjusted 𝑝-values for the youngest age. The ‘‘Naïve’’ adjusted 𝑝-values also suggest
a significant effect on various CAT scores at age 14 for both males and females. These inferences weaken for females in
the ‘‘Max-𝑈 ’’ adjusted 𝑝-values, but for males are generally stronger using the ‘‘Max-𝑈 ’’ adjusted 𝑝-values than the ‘‘Naïve’’
adjusted 𝑝-values.3
Schooling: The third block in Tables 1 and 2 present our findings for four educational attainment measures. None of the
adjusted 𝑝-values show any significant effect of the program on schooling for males. For females, the ‘‘Naïve’’ and ‘‘𝑈 = 0’’
adjusted 𝑝-values show significant effects for all schooling outcomes, and two of these null hypotheses are rejected even in
the ‘‘Max-𝑈 ’’ adjusted 𝑝-values. We find that the effects of the program on High School Graduation and GPA for females
remain statistically significant even after accounting for both imperfections in the randomization and the multiplicity of null
hypotheses.
Crime: The fourth block in Tables 1 and 2 present our findings for four outcomes related to criminal activity. These
outcomes are of special importance since reductions in crime are important contributors to the significant rate of return
estimates reported in Heckman et al. (2010b). ‘‘Total crime cost’’ includes victimization, police/court, and incarceration

3 In later work, García et al. (2023) find strong effects on cognition as measured by executive function through age 54. They also show strong effects on a
12

ariety of long term outcomes.
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Table 2
Results for females.

Outcome Age Control mean Diff-in-means Asymp. 𝑝-Values

Naïve 𝑈 = 0 Max-𝑈

Unadj. Adj. Unadj. Adj. Unadj. Adj.

IQ

Stanford–Binet 4 83.69 12.67 0.000 0.000 0.001 0.008 0.008 0.020 0.020
Stanford–Binet 5 81.65 12.67 0.003 0.001 0.243 0.012 0.203 0.014 0.354
Stanford–Binet 6 87.16 3.75 0.120 0.084 0.200 0.094 0.164 0.160 0.346
Stanford–Binet 7 86.00 6.52 0.030 0.031 0.092 0.133 0.137 0.191 0.222
Stanford–Binet 8 83.60 4.24 0.105 0.219 0.219 0.152 0.164 0.339 0.346
Stanford–Binet 9 83.04 3.70 0.133 0.169 0.243 0.203 0.203 0.354 0.354
Stanford–Binet 10 81.79 4.96 0.087 0.149 0.270 0.203 0.203 0.267 0.354

Achievement

CAT, Reading 14 8.44 8.06 0.021 0.018 0.061 0.078 0.082 0.136 0.167
CAT, Arithmetic 14 6.89 4.93 0.059 0.061 0.061 0.035 0.082 0.074 0.167
CAT, Language 14 7.83 11.62 0.004 0.003 0.008 0.008 0.070 0.020 0.144
CAT, Language Mechanics 14 8.83 11.80 0.006 0.004 0.061 0.047 0.082 0.097 0.167
CAT, Spelling 14 10.72 18.78 0.004 0.002 0.061 0.043 0.082 0.082 0.167

Educational HS Graduation 19 0.23 0.61 0.000 0.000 0.001 0.008 0.008 0.020 0.020
Vocational Training Certificate ≤40 0.08 0.16 0.057 0.064 0.064 0.078 0.078 0.144 0.144

Attainment Highest Grade Completed 19 10.75 1.01 0.005 0.008 0.017 0.070 0.070 0.113 0.113
GPA 19 1.53 0.89 0.000 0.001 0.004 0.039 0.039 0.082 0.082

Crime

# Non-Juv. Arrests ≤40 4.42 −2.26 0.050 0.048 0.066 0.020 0.133 0.121 0.158
Total Crime Cost ≤40 293.50 −271.33 0.142 0.020 0.066 0.024 0.133 0.082 0.158
# Total Charges ≤40 4.92 −2.68 0.033 0.032 0.036 0.020 0.067 0.043 0.090
# Non-Victimless Charges ≤40 0.31 −0.27 0.043 0.032 0.066 0.125 0.133 0.158 0.158

Employment Current Employment 19 0.15 0.29 0.012 0.013 0.023 0.008 0.031 0.035 0.090
No Job in Past Year 19 0.58 −0.34 0.007 0.007 0.016 0.024 0.031 0.074 0.090

at 19 Jobless Months in Past 2 Yrs. 19 10.42 −5.20 0.055 0.059 0.059 0.125 0.125 0.206 0.206

Employment Current Employment 27 0.55 0.25 0.032 0.038 0.055 0.110 0.149 0.175 0.198
No Job in Past Year 27 0.54 −0.29 0.020 0.023 0.043 0.078 0.149 0.128 0.175

at 27 Jobless Months in Past 2 Yrs. 27 10.45 −4.21 0.081 0.082 0.082 0.110 0.149 0.166 0.198

Employment Current Employment 40 0.82 0.02 0.448 0.456 0.456 0.442 0.442 0.567 0.567
No Job in Past Year 40 0.41 −0.25 0.029 0.041 0.084 0.047 0.070 0.113 0.160

at 40 Jobless Months in Past 2 Yrs. 40 5.05 −1.05 0.335 0.342 0.432 0.352 0.367 0.540 0.540

This table reports the results for females. The sample size consists of 51 participants, 25 treated and 26 control. The Table shows seven ‘‘blocks’’ of outcomes:
(1) Stanford–Binet IQ for ages 4–10; (2) Californian Achievement Test (CAT) measured at age 14; (3) Education achievement outcomes at various ages; (4)
Crime outcomes; (5) Employment outcomes at age 19; (6) Employment outcomes at age 27; (7) Employment outcomes at age 40. The first column displays the
outcome of interest. The second column displays the age at which the outcome was surveyed. The third and fourth columns contain, respectively, the mean value
of the outcome for the control group and the difference in means between the treatment group and the control group. The fifth column displays an asymptotic
unadjusted one-sided 𝑝-value based on the Studentized difference in means. The columns under the heading ‘‘Naïve’’ display, respectively, the unadjusted and
adjusted 𝑝-values based on a naïve permutation test. The two columns under the heading ‘‘𝑈 = 0’’ display, respectively, the unadjusted and adjusted 𝑝-values
derived from applying Theorems 4.1 and 4.2 ignoring Step 5 of the randomization procedure by setting 𝐔(𝐷,𝑀𝑊 ) = {{0}|𝐽 |}. The two columns under the
eading ‘‘Max-𝑈 ’’ display, respectively, the unadjusted and adjusted 𝑝-values derived from applying Theorems 4.1 and 4.2.

costs. See Heckman et al. (2010b) for a more detailed discussion of this variable and its contribution to the rate of return of
the program. ‘‘Non-victimless charges’’ refer to felony crimes associated with substantial costs to crime victims. Victimless
charges, on the other hand, refer to illegal activities, such as illegal gambling, drug possession, prostitution, and driving
without a license plate, that do not produce victims.
The ‘‘Naïve’’ adjusted 𝑝-values suggest a statistically significant effect of the program on all outcomes for females and for two
outcomes for males. Only one of the significant findings for females survives in the ‘‘𝑈 = 0’’ and ‘‘Max-𝑈 ’’ adjusted 𝑝-values
– ‘‘Total charges.’’ On the other hand, we find statistically significant effects on all four outcomes for males in the ‘‘𝑈 = 0’’
adjusted 𝑝-values. Only one of these survives in the ‘‘Max-𝑈 ’’ adjusted 𝑝-values – ‘‘Total non-victimless crimes.’’
Employment: The final three panels in Tables 1 and 2 present our findings for three outcomes related to employment
measured at different ages. The ‘‘Naïve’’ adjusted 𝑝-values show a statistically significant effect on only one outcome related
to employment for males – current employment measured at age 40. The ‘‘𝑈 = 0’’ adjusted 𝑝-values show a statistically
significant effect on the ‘‘number of jobless months in the past two years measured at age 27.’’ This effect survives even in
the ‘‘Max-𝑈 ’’ adjusted 𝑝-values. The ‘‘Naïve’’ adjusted 𝑝-values show a significant effect on almost all outcomes for females.
The number of statistically significant effects decreases substantially using the ‘‘𝑈 = 0’’ adjusted 𝑝-values, and disappears
entirely for outcomes measured at age 27. Only effects on outcomes measured at age 19 persist in the ‘‘Max-𝑈 ’’ adjusted
𝑝-values.

We additionally consider aggregating the outcomes within each of the fourteen blocks described above into a summary index.
This index is composed of the average rank of participant 𝑖’s outcomes across each block of variables. As in our analysis above,
we consider males and females separately. In this way, we obtain two families of null hypotheses: one corresponding to the seven
13
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Table 3
Results using rank summary indexes across outcome blocks for males and females.

Outcome Age Control mean Diff-in-means Asymp. 𝑝-Values

Naïve 𝑈 = 0 Max-𝑈

Unadj. Adj. Unadj. Adj. Unadj. Adj.

Males

IQ 4–10 0.476 0.093 0.040 0.039 0.149 0.034 0.084 0.099 0.135
Achievement Scores 14 0.483 0.128 0.015 0.016 0.080 0.001 0.001 0.008 0.008
Schooling 19 0.659 0.009 0.414 0.407 0.586 0.358 0.358 0.408 0.408
Crime 40 0.493 0.128 0.033 0.034 0.142 0.036 0.062 0.084 0.134
Employment 19 0.750 0.007 0.459 0.449 0.449 0.244 0.440 0.508 0.546
Employment 27 0.712 0.062 0.179 0.175 0.360 0.067 0.291 0.121 0.361
Employment 40 0.676 0.082 0.096 0.089 0.248 0.079 0.192 0.101 0.223

Females

IQ 4–10 0.445 0.155 0.007 0.008 0.032 0.012 0.020 0.027 0.043
Achievement Scores 14 0.424 0.208 0.003 0.003 0.016 0.035 0.035 0.074 0.074
Schooling 19 0.568 0.244 0.000 0.000 0.000 0.008 0.008 0.019 0.019
Crime 40 0.617 0.120 0.075 0.076 0.149 0.024 0.129 0.105 0.245
Employment 19 0.655 0.148 0.007 0.007 0.038 0.012 0.051 0.058 0.128
Employment 27 0.648 0.171 0.016 0.017 0.053 0.039 0.078 0.113 0.206
Employment 40 0.762 0.075 0.176 0.180 0.180 0.149 0.149 0.253 0.253

This table reports the results on the summary index of the average rank across outcome blocks for each gender. There are seven indexes that summarize
seven ‘‘blocks’’ of outcomes: (1) IQ; (2) CAT, measured at age 14; (3) Education; (4) Crime; (5) Employment at age 19; (6) Employment at age 27; and (7)
Employment at age 40. The first column displays the outcome of interest. The second column displays the age at which the outcome was surveyed. The third
and fourth columns contain, respectively, the mean value of the outcome for the control group and the difference in means between the treatment group and
the control group. The fifth column displays an asymptotic unadjusted one-sided 𝑝-value based on the Studentized difference in means. The columns under the
heading ‘‘Naïve’’ display, respectively, the unadjusted and adjusted 𝑝-values based on a naïve permutation test. The two columns under the heading ‘‘𝑈 = 0’’
display, respectively, the unadjusted and adjusted 𝑝-values derived from applying Theorems 4.1 and 4.2 ignoring Step 5 of the randomization procedure by
setting 𝐔(𝐷,𝑀𝑊 ) = {{0}|𝐽 |}. The two columns under the heading ‘‘Max-𝑈 ’’ display, respectively, the unadjusted and adjusted 𝑝-values derived from applying
Theorems 4.1 and 4.2.

summary indices for males, and another corresponding to the seven summary indices for females. The results of this exercise are
summarized in Table 3. The ‘‘Naïve’’ adjusted 𝑝-values show a statistically significant effect on only achievement scores for males,
whereas the ‘‘𝑈 = 0’’ adjusted 𝑝-values show a statistically significant effect on both crime and achievement scores for males. Only
the effect on achievement scores for males, however, remains according to the ‘‘Max-𝑈 ’’ adjusted 𝑝-values. Both the ‘‘Naïve’’ adjusted
𝑝-values and the ‘‘𝑈 = 0’’ adjusted 𝑝-values show a significant effect on almost all outcomes for females. Effects on IQ, achievement
scores and schooling, remain significant in the ‘‘Max-𝑈 ’’ adjusted 𝑝-values.

6. Conclusion

This paper develops and applies a framework for inference about the effects of a program on multiple outcomes when the
assignment of treatment status is imperfectly randomized. The key idea that underlies our approach is to make use of information
limiting the extent to which randomization is imperfect. Using this approach, we have constructed under weak assumptions a
procedure for testing the family of null hypotheses in which each null hypothesis specifies that the program had no effect on one
of several outcomes of interest that controls the familywise error rate in finite samples. We use our methodology to reanalyze data
from the HighScope Perry Preschool program. The reported beneficial long-term effects for the HighScope Perry Preschool program
are a cornerstone in the argument for early childhood intervention in the United States. We find statistically significant effects of
the program for both males and females, thereby showing that some of the criticisms regarding the reliability of this evidence are
not justified. We believe our framework will be useful in analyzing other studies where randomization is imperfect, provided that
the information limiting the extent to which randomization is imperfect is available, as it is in the case of the HighScope Perry
Preschool program.
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