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Abstract
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non-standard choice incentives. We use this framework to assess the choice incentives of key
studies in policy evaluation. We apply the framework to study the impact of education on mi-
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program and recent machine learning techniques, we estimate the causal effect of schooling
on migration. Our findings indicate that completing middle school significantly increases the
likelihood of migration, while additional education beyond middle school does not. These re-
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1 Introduction

Instrumental variables (IV) are widely used in economics to evaluate the causal effect of an en-

dogenous treatment on an outcome of interest. A valid IV is an exogenous variable that affects the

outcome only through its impact on the treatment choice. However, identifying causal effects in

IV models requires additional assumptions beyond the existence of a valid instrument. The tradi-

tional approach is to impose choice restrictions that constrain how individuals select treatments in

response to changes in the instrumental variable.

A seminal identification assumption in IV models with a binary choice is the monotonicity

condition of Imbens and Angrist (1994). The condition asserts that a change in the instrument

must affect all agents in the same direction, either by encouraging them to adopt or rejecting the

treatment. Vytlacil (2002) demonstrates that this monotonicity condition is equivalent to assuming

a separability condition, in which the treatment choice is an indicator function that compares the

propensity score with a latent variable that affects the outcome. (Heckman and Vytlacil, 1999)

and Heckman and Vytlacil (2005) greatly explore the properties choice models that employ the

separability condition. These pioneering concepts spiked a vast literature on both the empirical

and theoretical aspects of identification assumptions in IV models with binary choices.1

The IV literature has successfully expanded the concepts of monotonicity and separability

to multiple-choice models. Angrist and Imbens (1995) extends the monotonicity condition of Im-

bens and Angrist (1994) from binary to multiple choice models. Their condition is often used to

investigate treatment variables that possess a natural order. Ordered choice models are also exam-

ined by Cameron and Heckman (1998) and further studied by Carneiro et al. (2003) and Cunha

et al. (2007). A significant advance in the IV literature of multiple choice models is due to Lee

and Salanié (2018). They develop general identification results for choice models characterized

by coherent separability conditions. Heckman and Pinto (2018), on the other hand, propose the

unordered monotonicity condition that applies to treatment choices that are not ordered.2 More

recently, Rose and Shem-Tov (2021) propose a monotonicity condition called extensive margin com-

pliers only (EMCO), wherein a change in the instrument incentivizes all agents to shift from no

treatment to some treatment status. Mogstad et al. (2021a,b) investigate the monotonicity criteria

in a choice model with multiple instrumental variables.

We propose a departure from the traditional approach that governs the identification analysis

of IV models. Rather than focusing on novel monotonicity or separability conditions, we explore

how choice incentives and classical economic behavior can be leveraged to generate identification

1For examples of works in this literature, see Aliprantis (2012); Angrist et al. (2000); Barua and Lang (2016);
Dahl et al. (2017); de Chaisemartin (2017); Heckman (2010); Heckman and Urzúa (2010); Heckman and Vytlacil
(2007a,b); Huber et al. (2017); Huber and Mellace (2012, 2015); Hull (2018); Imbens and Rubin (1997); Klein (2010);
Mogstad et al. (2018); Mogstad and Torgovitsky (2018); Small and Tan (2007).

2Unordered choice models have been studied mainly through the literature on structural equations. A common ap-
proach assumes that additively separable threshold-crossing models generate the equations that govern the treatment.
Examples of this literature are Heckman et al. (2006, 2008); Heckman and Vytlacil (2007a,b).
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conditions in IV models with multiple choices and categorical instruments. Our approach is founded

on a comprehensible framework that employs revealed preference analysis to transform choice incen-

tives into identification conditions. We demonstrate that the identification assumptions commonly

employed in the IV literature can be traced back to specific properties of choice incentives. More-

over, we show that our framework is a valuable tool for developing new identification strategies

grounded in economic behaviors.

A benefit of our framework is that identification does not rely on statistical or functional

form assumptions. Instead, identification conditions arise from applying fundamental principles of

economic behavior to choice incentives. This feature enhances the credibility and comprehension

of the identification mechanism. The method is flexible enough to cover a broad spectrum of

non-trivial identification assumptions. We demonstrate its versatility by analyzing well-established

examples of choice incentives in the policy evaluation literature. Additionally, the framework

can offer novel solutions to non-standard economic scenarios where the identification assumptions

typically invoked by the IV literature are seldom justified.

We use our framework to investigate the migration of poor Mexican households to the US.

Currently, the US is home to approximately 12 million undocumented residents, with almost half

of these migrants originating from Mexico. Borjas (1987, 1994) suggest an adverse selection in

migration patterns, with lower-skilled workers benefiting the most from moving to the US. This

perspective is supported by Angelucci (2015), who shows that schooling incentives led lower-skilled

migrants to move to the US. She uses data from Oportunidades, Mexico’s flagship anti-poverty

program (Gertler, 2004).

On the other hand, Behrman et al. (2005); Chiquiar and Hanson (2005); Hanson (2006) posit a

non-monotonic relationship between education and migration. They argue that fundamental skills,

such as basic English proficiency acquired in middle school, increase the likelihood of migration.

Conversely, further education diminishes the propensity to migrate by enhancing the attractiveness

of the domestic labor market relative to its international counterpart.

We develop a stylized model that leverages the data from Oportunidades to analyze whether

schooling exerts a non-monotonic effect on the decision to migrate to the US. We use our incen-

tive framework to identify the causal effects of educational attainment on migration. Our findings

provide strong evidence that completing middle school increases the likelihood of migration, while

further education beyond middle school does not. We estimate the model using novel machine learn-

ing techniques developed by Navjeevan, Pinto, and Santos (2023), which offer superior flexibility

and predictive accuracy compared to traditional two-stage least squares (2SLS) approaches.

This paper adds to the growing literature on using revealed preference analysis to aid the

identification of causal parameters in policy evaluations. Recent examples of this growing literature

include Kline andWalters (2016), Kline and Tartari (2016), Pinto (2022), Feller et al. (2016), Kamat

(2021), Mountjoy (2021), and Brinch et al. (2017).
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Our empirical analysis contributes to the substantial literature evaluating the Oportunidades

program. Our findings support the hypothesis of a non-monotonic relationship between the migra-

tion of impoverished Mexicans to the US and their education levels. Additionally, this paper joins

a growing body of research applying innovative machine learning techniques (Chernozhukov et al.,

2022; Smucler et al., 2019) to perform policy evaluations.

This paper is organized as follows. Section 2 describes our notation and presents a general cri-

terium for identifying causal parameters in IV models. Section 3 introduces our revealed preference

framework and demonstrates how it relates to several works in the literature. Section 4 investigates

how patterns of choice incentives yield identification conditions in IV models. Section 5 presents

our empirical application. Section 6 concludes.

2 Setup and Notation

We consider a IV model consisting of three observed variables: a categorical instrument Z that

takes NZ values in Z = {z1, ..., zNZ
}; a multiple treatment choice T that takes NT values in

T = {t1, ..., tNT
}; and an outcome Y ∈ R. Let Y (z, t) be the counterfactual outcome Y when

(Z, T ) are fixed to (z, t) ∈ Z × T , and Y (t) be the counterfactual outcome when T is fixed to

t ∈ T .3 Let Dt = 1[T = t]; t ∈ T be the binary indicator for the treatment choice t ∈ T and

Dz = 1[Z = z]; z ∈ Z be the indicator for the IV-value z ∈ Z.

The core properties of the IV model are:

Exclusion Restriction : Y (z, t) = Y (t) for all (z, t) ∈ Z × T . (1)

Exogeneity of the IV: Z ⊥⊥ (Y (t), T (z)) for all (z, t) ∈ Z × T . (2)

Relevance of the IV: E
(
[Dz1 , ..., DzNZ

]′[Dt1 , ..., DtNT
]
)

has full rank. (3)

The exclusion restriction implies that Z affects Y only through its impact on T. The exogeneity

assumption means that the instrument Z is as good as randomly assigned. Finally, the relevance

assumption states that Z affects T . All variables belong to the probability space (I,F , P ) where

i ∈ I denotes an individual. For notational simplicity, we suppress the baseline variables X. All

analyses can be understood as conditioned on X.

The response vector S ≡ [T (z1), ..., T (zNZ
)]′ is the unobserved NZ-dimensional vector that

stacks the counterfactual choices T (z) across the IV-values z in Z. The elements s in the support

of the response vector, S = {s1, ..., sNS
}, are called the response types, or simply types. The

response matrix R ≡ [s1, ..., sNS
] is the NZ ×NS that assembles types as columns and whose rows

correspond to IV-values.

To fix ideas, consider the Local Average Treatment Effects (LATE) model of Imbens and

3This notation uses the potential outcome framework of Holland (1986); Rubin (1978). For a discussion on
causality and the fixing operation, see Heckman and Pinto (2013, 2022).
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Angrist (1994). The model employs a binary instrument Z ∈ {z0, z1} and a binary treatment

T ∈ {t0, t1}. The response vector S = [T (z0), T (z1)]
′ admits four possible types: never-takers

snt = [t0, t0]
′, compliers sc = [t0, t1]

′, always-takers sat = [t1, t1]
′, and defiers sd = [t1, t0]

′. Without

any additional assumption, its response matrix is given by:

R =

snt sc sat sd[ ]
t0 t0 t1 t1 T (z0)
t0 t1 t1 t0 T (z1)

(4)

Imbens and Angrist (1994) identify this model by assuming a monotonicity condition that

eliminates the defiers sd. This identification assumption is part of a broader class of choice restric-

tions, which we examine in the next section.

The identification of causal parameters in IV models requires expressing the moments of

observed data as a function of counterfactual parameters. This relationship is captured by the

following equation from Heckman and Pinto (2018):

E(Y |T = t, Z = z)P (T = t|Z = z)︸ ︷︷ ︸
Observed

=
∑
s∈S

1[T = t|S = s, Z = z]︸ ︷︷ ︸
Known

·E(Y (t)|S = s)P (S = s)︸ ︷︷ ︸
Unobserved

∀(z, t) ∈ Z × T .

(5)

The left-hand side of (5) comprises two observed quantities: the conditional expectation

E(Y |T = t, Z = z), and propensity score P (T = t|Z = z).4 The first term of the right-hand

side of (5) is deterministic since choice T is known given IV-value z and type s. The following term

comprises two unobserved quantities: the expected value of counterfactual outcomes conditioned

on response types E(Y (t)|S = s), and the type probabilities P (S = s). We can express (5) using

the following matrix representation:

QZ(t)⊙ PZ(t) = Bt

(
QS(t)⊙ PS

)
for all t ∈ T , (6)

where QZ(t) ≡ [E(Y |T = t, Z = z1), ..., E(Y |T = t, Z = zNZ
)]′ is the observed vector of outcome

expectations; PZ(t) ≡ [P (T = t|Z = z1), ..., P (T = t|Z = zNZ
)] is the observed vector of propensity

scores; QS(t) ≡ [E(Y (t)|S = s1), ..., E(Y (t)|S = sNS
)], is the unobserved vector of counterfactual

outcomes; PS ≡ [P (S = s1), ..., P (S = sNS
)] is the unobserved vector of type probabilities; and ⊙

denotes element-wise (Hadamard) multiplication. Finally, Bt ≡ 1[R = t] is the NZ × NS binary

matrix that takes value one if the entry in R is t and zero otherwise. The matrices Bt typically

have full row rank since the number of types NS far exceeds the number of IV-values NZ . We use

Bt[·, s] and Bt[z, ·] for the s-column and z-row of Bt respectively. Under this notation, we can

state the following identification criteria:5

4Equation (5) holds for any real-valued function g : R → R and for (z, t) ∈ Z × T , that is:

E(g(Y )|T = t, Z = z)P (T = t|Z = z) =
∑
s∈S

1[T = t|S = s, Z = z] · E(g(Y (t))|S = s)P (S = s).

Setting g(Y ) = 1[Y ≤ y] generates an equation for the cumulative distribution function of counterfactual outcomes.
Setting g(Y ) = 1 generates an equation that relates propensity scores and response type probabilities.

5The theorem also holds for the outcome transformation g(Y ) for any function g : R → R.
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Theorem T.1. Let R be the response matrix for a choice model in which the IV Assumptions (1)–

(3) hold. Let S̃ ⊂ S represent any subset of response types, and let |S̃| denote the number of

elements in S̃. For any choice t ∈ T , if the binary matrix Bt = 1[R = t] has full row rank, the

following condition holds:

E(Y (t)|S ∈ S̃) is identified ⇔ (
∑

s∈S̃ Bt[·,s])
′
(BtB′

t)
−1
(
∑

s∈S̃ Bt[·,s])
|S̃| = 1.

Moreover, if E(Y (t)|S ∈ S̃) is identified, the following must hold:

P (S ∈ S̃) =
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1
PZ(t),

E(Y (t)|S ∈ S̃)P (S ∈ S̃) =
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1 (
QZ(t)⊙ PZ(t)

)
.

Proof. See Appendix A.1

The theorem provides a straightforward criterion for determining whether the counterfactual

outcome Y (t) is identified for a specific set of types S̃ in any IV model with multiple choices

and categorical IV. In particular, it implies that for any choice t and any response type s, the

counterfactual outcome E(Y (t)|S = s) is identified if and only if Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s] = 1.6

A key insight from this criterion is that identification in IV models depends entirely on the

properties of the response matrix R. More specifically, the identification of causal parameters arises

from the appropriate selection of admissible types that constitute the response matrix R. Without

further assumptions, the total number of types is NNZ
T , which far exceeds the number of known

moments NT ·NZ . This mismatch prevents the point identification of the counterfactual outcomes

conditioned on the types. Thus, credible criteria are necessary to restrict the number of admissible

types, NS . The following section introduces a framework that leverages choice incentives to define

the set of admissible types in IV models.

3 Exploring Choice Incentives to Eliminate Types

A well-known identification assumption in the LATE model (4) is the monotonicity condition of

Imbens and Angrist (1994). The condition states that a change in the instrument from z0 to z1

induces agents to choose t1. This condition can be formalized as:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1], ∀i. (7)

This monotonicity condition eliminates the defiers (sd), which secures the identification of the

causal effect for the compliers E(Y (t1)− Y (t0)|S = sc).

Extending the monotonicity condition of Imbens and Angrist (1994) to multiple-choice models

is not as straightforward as it may appear. While the binary treatment model leads to a single

6We illustrate the application of this result to the LATE model in Appendix A.2.
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and intuitive monotonicity condition, the case of multiple choice gives rise to a variety of potential

conditions. For instance, the monotonicity condition proposed by Angrist and Imbens (1995)

and the unordered monotonicity of Heckman and Pinto (2018) differ considerably in multi-choice

settings. Nonetheless, both approaches converge to the same original condition of Imbens and

Angrist (1994) when the treatment is binary.

We offer a general framework that leverages choice incentives to explore, generate, and justify

monotonicity conditions in multiple-choice models. To do so, we introduce some notation to map

choice incentives into identification assumptions.

Let the incentive matrix L be a NZ × NT dimensional matrix that characterizes the choice

incentives induced by the instrument. Each input L[z, t] denotes the relative incentive of the IV-

value z (row) towards the choice t ∈ T (column). The inequality L[z, t] ≤ L[z′, t] means that a

change in the IV values from z to z′ increases the incentives towards the choice t, making the choice

more attractive. In the case of LATE, the IV-value z1 incentivizes choice t1. The IV-value z0 serves

as a baseline comparison. Thus, LATE incentives can be characterized by the following matrix:

L =

t0 t1[ ]
0 0
0 1

z0
z1

(8)

The first row of the matrix takes values zero since z0 provides no incentives. The second row

indicates that z1 incentivizes t1.

We employ standard revealed preference analysis to develop a choice rule that transforms the

choice incentives, represented by the incentive matrix L, into choice restrictions. This rule is given

by:7

Choice Rule: If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (9)

The choice rule states that if agent i prefers choice t over t′ under z-incentives (Ti(z) = t),

and if z′-incentives favor t at least as much as t′ (L[z′, t′] − L[z, t′] ≤ L[z′, t] − L[z, t]), then the

agent will not choose t′ over t under z′ (Ti(z
′) ̸= t′). This rule highlights a fundamental principle of

rational choice theory, namely, an individual’s preferences toward a choice remain consistent unless

there are compelling incentives to choose otherwise. The choice rule generates choice constraints

that serve to eliminate types. We illustrate this elimination process by revisiting several prominent

examples from the IV literature.

Example E.1. Our methodology offers an economic justification for the monotonicity condition in

the LATE model. The condition arises from applying revealed preference analysis embodied by the

choice rule (9) to the choice incentives represented by the incentive matrix L in (8), that is:

Ti(z0) = t1, and L[z1, t0]−L[z0, t0] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] thus Ti(z1) ̸= t0.

7See Appendix A.3 for a formal derivation of the choice rule using revealed preference arguments.
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In summary, the LATE incentives lead to the choice restriction Ti(z0) = t1 ⇒ Ti(z1) ̸= t0. This

means that if an agent i chooses t1 under no incentives (z0), it will not choose t0 when the incentives

for t1 are present (z1). This restriction eliminates the defiers and is equivalent to assuming the

customary monotonicity condition in (7).

The next example investigates a multiple-choice model.

Example E.2. Kline and Walters (2016) examine the Head Start Impact Study using a three-valued

choice model, T ∈ {n, c, h}, where h stands for Head Start, c for other preschool programs, and n

for no preschool (home-care). The instrument takes values on Z ∈ {z0, z1}, where z1 indicates an

offer to attend a Head Start school and z0 denotes no offer. The authors assume that the offer to

attend Head Start does not induce children to leave Head Start nor instigate the children to switch

between c and n. They express these assumptions by the following choice restriction:

Ti(z0) ̸= Ti(z1) ⇒ Ti(z1) = h ∀ i ∈ I. (10)

This restriction can also be obtained by applying the choice rule to the model’s incentives.

Specifically, the incentive matrix of this model is given by:

L =

n c h[ ]
0 0 0 z0
0 0 1 z1

(11)

Applying the choice rule (9) to the model’s incentive matrix generates four choice restrictions:

Ti(z0) = h, and L[z1, c]−L[z0, c] = 0 ≤ 1 = L[z1, h]−L[z0, h] thus Ti(z1) ̸= c,

Ti(z0) = h, and L[z1, n]−L[z0, n] = 0 ≤ 1 = L[z1, h]−L[z0, h] thus Ti(z1) ̸= n,

Ti(z0) = n, and L[z1, c]−L[z0, c] = 0 ≤ 0 = L[z1, n]−L[z0, n] thus Ti(z1) ̸= c,

Ti(z0) = c, and L[z1, n]−L[z0, n] = 0 ≤ 0 = L[z1, c]−L[z0, c] thus Ti(z1) ̸= n.

The first and the second choice restrictions are summarized by Ti(z0) = h⇒ Ti(z1) = h. The third

implies Ti(z0) = n ⇒ Ti(z1) ̸= c, while the fourth states that Ti(z0) = c ⇒ Ti(z1) ̸= n. Altogether,

these restrictions are equivalent to the authors’ restriction in (10). These restrictions eliminate four

of the nine possible types. The remaining response types are displayed in the following response

matrix:

R =

s1 s2 s3 s4 s5[ ]
n c h n c T (z0)
n c h h h T (z1)

.

A potential critique of the framework presented here is that it requires analytical tools that

may seem excessive for simpler models such as LATE. In these cases, relying on monotonicity

conditions offers a more parsimonious solution. However, the benefits of the revealed preference

framework become more evident when applied to more complex choice models. In such instances,

the framework often succeeds in eliminating more types than monotonicity conditions. The follow-
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ing examples demonstrate this advantage.

Example E.3. Kirkeboen, Leuven, and Mogstad (2016) investigate a choice model featuring three

treatment options (t0, t1, t2) and three IV-values (z0, z1, z2). In this model, z1 incentivizes choice

t1, z2 incentivizes choice t2, while z0 serves as a baseline with no incentives. The response vec-

tor is the 3 × 1 vector S = [T (z0), T (z1), T (z2)]
′, where each of the three counterfactual choices

(T (z0), T (z1), T (z2)) can take on any of the three treatment values (t0, t1, t2). This yields a total

of 27 possible response types.

The choice incentives in this model justify two natural monotonicity conditions:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1], and 1[Ti(z0) = t2] ≤ 1[Ti(z2) = t2]. (12)

The first condition asserts that an IV-shift from z0 to z1 induces agents to choose t1, while

the second condition states that a shift from z0 to z2 encourages agents to opt for t2. These

conditions eliminate 12 of the 27 types, which is insufficient to ensure the point identification of

any counterfactual outcome.8

Employing a revealed preference approach allows for further elimination of response types.

The corresponding incentive matrix for this model is as follows:

L =

t0 t1 t2[ ]
0 0 0 z0
0 1 0 z1
0 0 1 z2

. (13)

Matrix L indicates that z1 (second row) incentivizes t1 while z2 (last row) incentivizes t2.

Appendix A.4 applies choice rule (9) to all combinations of two treatment values t, t′ ∈ {t0, t1, t2}
and two IV-values z, z′ ∈ {z0, z1, z2}. These analyses yield five choice restrictions displayed below:

Ti(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
Ti(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
Ti(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2
Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1

. (14)

These restrictions are intuitive. For instance, the first choice restriction states that if an agent

chooses t0 under z0 (no incentives), then it will not choose t2 under z1, since z1 does not incentivize

t2. The agent will not choose t1 under z2 either since z2 does not incentivize t1 either. The five choice

restrictions eliminate 19 response types, including the 12 types eliminated by the monotonicity

conditions in (12).9 The eight types that survive this elimination process are displayed in the

following response matrix:

8The first monotonicity condition eliminates the six types given by [t1, t2, t
′] or [t1, t3, t

′] for t′ ∈ {t0, t1, t2}. The
second monotonicity condition eliminates another six types: [t2, t

′, t1] or [t2, t
′, t3] for t

′ ∈ {t0, t1, t2}. See Appendix A.4
for this analysis.

9See Appendix A.4 for the elimination process and additional analyses of this IV model.
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R =

s1 s2 s3 s4 s5 s6 s7 s8[ ]
t0 t1 t2 t0 t0 t0 t1 t2 T (z0)
t0 t1 t2 t1 t0 t1 t1 t1 T (z1)
t0 t1 t2 t2 t2 t0 t2 t2 T (z2)

. (15)

The first three response types, s1, s2, s3, correspond to the always-takers. They refer to agents

who choose the same treatment (t0, t1, t2, respectively) regardless of the instrumental value. We

refer to type s4 as the intended complier. It comprises agents that are most responsive to the IV

incentives. They choose t0 under no incentives, t1 when assigned to z1, and t2 when assigned to z2.

The remaining four types s5, ..., s8 are called partial compliers since they choose only two of the

three possible choices.

Example E.4. Pinto (2022) examines the housing experiment called Moving to Opportunity. The

model consists of three neighborhood choices th, tm, tl denoting high-, medium-, and low-poverty

neighborhoods, respectively. Families were randomly assigned to one of the three groups. The

control group zc offers no incentives. The Section Eight group z8 received a housing voucher that

incentivized families to choose either medium-poverty (tm) or low-poverty (tl) neighborhoods. The

Experimental group ze received a voucher that incentivized families to live in a low-poverty (tl)

neighborhood. These incentives justify three monotonicity conditions:

1[Ti(zc) = tl] ≤ 1[Ti(ze) = tl],

1[Ti(zc) ∈ {tm, tl}] ≤ 1[Ti(z8) ∈ {tm, tl}],

1[Ti(ze) = tm] ≤ 1[Ti(z8) = tm].

The first condition states that an IV-shift from zc to ze induces tl since zc offers no incentives

and ze incentivizes only tl. The second condition states that a shift from zc to z8 promotes choices

tm or th, since z8 incentivizes both tm and tl. The last condition means that a change from ze to

z8 instigates choice tm since both ze, z8 incentivize tl but only z8 incentivizes tm. These conditions

eliminate 14 of the 27 possible response types. The remaining 13 types do not secure the point

identification of response-type probabilities or counterfactual outcomes. The revealed preference

analysis is more effective in eliminating additional response types. The incentive matrix of this

model is:10

L =

th tm tl[ ]0 0 0 zc
0 1 1 z8
0 0 1 ze

. (16)

Applying Choice Rule (9) to the incentive matrix in (16) yields the seven choice restrictions

listed below:

10See Pinto (2022) for the derivations of these restrictions.
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Ti(zc) = tl ⇒ Ti(ze) = tl and Ti(z8) ̸= th
Ti(zc) = tm ⇒ Ti(ze) ̸= th and Ti(z8) ̸= th
Ti(ze) = tm ⇒ Ti(zc) = tm and Ti(z8) = tm
Ti(ze) = th ⇒ Ti(zc) = th and Ti(z8) ̸= tl
Ti(z8) = th ⇒ Ti(zc) = th and Ti(ze) = th
Ti(z8) = tl ⇒ Ti(ze) = tl
Ti(zc) ̸= th ⇒ Ti(z8) = Ti(zc)

These restrictions eliminate 20 out of the 27 possible response types, including those eliminated

by the monotonicity conditions. The seven types that survive the elimination process are displayed

in the following response matrix:

R =

s1 s2 s3 s4 s5 s6 s7[ ]
th tm tl th th tm th T (zc)
th tm tl tm tl tm tm T (z8)
th tm tl tl tl tl th T (ze)

(17)

These response types enable the point identification of all response type probabilities and most

of the counterfactual outcomes.

Example E.5. Mountjoy (2022) studies the returns to two- and four-year college degrees. The au-

thor uses proximity to college as an IV to college enrollment. Let T ∈ {0, 2, 4} represent the number

of years of the college degree. We consider a discrete instrument Z = (Z2, Z4) ∈ {0, 1} × {0, 1}
where Z2 and Z4 indicate the proximity to two-year and four-year colleges, respectively. We use

T (z2, z4) for the counterfactual choice. The response vector is S = [T (0, 0), T (0, 1), T (1, 0), T (1, 1)]′

which This yields a total of 81 possible response types. Proximity serves as an incentive for college

enrollment, thereby justifying six natural monotonicity conditions:

1[Ti(1, z4) = 0] ≤ 1[Ti(0, z4) = 0], 1[Ti(z2, 1) = 0] ≤ 1[Ti(z2, 0) = 0],
1[Ti(1, z4) = 2] ≥ 1[Ti(0, z4) = 2], 1[Ti(z2, 1) = 2] ≤ 1[Ti(z2, 0) = 2],
1[Ti(1, z4) = 4] ≥ 1[Ti(0, z4) = 4], 1[Ti(z2, 1) = 4] ≥ 1[Ti(z2, 0) = 4].

(18)

These monotonicity conditions state that an increase in the proximity to a two-year college

induces agents towards choice 2 and away from choices 0 and 4. Conversely, an increase in the

proximity to a four-year college induces agents towards choice 4 and away from choices 0 and 2.

These monotonicity conditions eliminate 70 out of the 81 possible response types. The revealed

preference analysis is capable of eliminating additional types. The incentive matrix of this choice

model is given by:

L =

0 2 4 (z2, z4)


0 0 0 (0, 0)
0 0 1 (0, 1)
0 1 0 (1, 0)
0 1 1 (1, 1)

(19)

The choice restrictions generated by applying choice rule (9) to the incentive matrix in (19)

are:11

11See Appendix A.5 for these derivations.
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Ti(0, 0) = 0 ⇒ Ti(0, 1) ̸= 2, and Ti(1, 0) ̸= 4
Ti(0, 0) = 2 ⇒ Ti(0, 1) ̸= 0, and Ti(1, 0) = Ti(1, 1) = 2
Ti(0, 0) = 4 ⇒ Ti(1, 0) ̸= 0, and Ti(0, 1) = Ti(1, 1) = 4
Ti(0, 1) = 0 ⇒ Ti(0, 0) = 0, Ti(1, 0) ̸= 4, and Ti(1, 1) ̸= 4,
Ti(0, 1) = 4 ⇒ Ti(1, 1) ̸= 0
Ti(1, 0) = 0 ⇒ Ti(0, 0) = 0, Ti(0, 1) ̸= 2, and Ti(1, 1) ̸= 2,
Ti(1, 0) = 2 ⇒ Ti(1, 1) ̸= 0

These choice restrictions eliminate 72 out of the 81 possible response types, including the types

eliminated by the monotonicity conditions in (18). The response matrix containing the nine types

that survive this elimination process is given by:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


0 0 0 0 0 2 2 4 4 T (0, 0)
0 0 4 4 4 2 4 4 4 T (0, 1)
0 2 0 2 2 2 2 2 4 T (1, 0)
0 2 4 2 4 2 2 4 4 T (1, 1)

(20)

Generality and Limitations

Our framework is broadly applicable to IV models that can be characterized by an incentive

matrix. It encompasses a diverse array of instruments designed to enhance the appeal, accessibility,

or affordability of treatment options. These instruments may include financial incentives such

as monetary rewards, promotional efforts like advertising campaigns, fiscal policies including tax

reductions and subsidies, pricing strategies, or geographical proximity.

The incentive matrix exhibits several desirable properties: (1) it allows an IV-value to incen-

tivize more than one treatment choice; (2) the resulting choice restrictions are invariant to permu-

tations of rows and columns; and (3) choice restrictions are also invariant to strictly monotonic

transformations of the matrix.12

A key requirement of the incentive matrix is that choice incentives must be comparable.

For instance, the incentive matrix is not appropriate to represent the incentives in a schooling

experiment that seeks to boost academic performance through monetary prizes or academic awards.

These incentives are not easily ranked since some students may favor academic awards, while others

may prefer monetary prizes.

4 Which Incentives Justify Monotonicity Conditions?

The revealed preference framework delineated in the preceding section provides a comprehensive

methodology for converting choice incentives into choice constraints. An intuitive application of

this framework is to investigate which specific configurations of choice incentives substantiate the

monotonicity conditions frequently invoked in the IV literature.

12Note that if the two rows of an incentive matrix are equal, then the corresponding IV-values are distinguishable
in terms of choice incentives. In this case, a researcher could combine these IV-values into a single representative
value.
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We study the economic content of three monotonicity conditions: the well-known condition

of Angrist and Imbens (1995), the unordered monotonicity of Heckman and Pinto (2018), and the

extensive margin compliers only (EMCO) discussed by Andresen and Huber (2021); Angrist and

Imbens (1995); Rose and Shem-Tov (2021). Additionally, we investigate weaker incentive structures

that generate monotonicity conditions for a single treatment status in multi-choice models.

All the theorems presented here apply to IV models described by Assumptions (1)–(3) and

whose choice incentives are determined by an incentive matrix L that satisfies Choice Rule (9).

4.1 Investigating Ordered Monotonicity

Angrist and Imbens (1995) states that a change in the instrument induces all agents towards the

same treatment direction:

Ti(z) ≤ Ti(z
′) ∀ i, or Ti(z) ≥ Ti(z

′) ∀ i and any z, z′ ∈ Z. (21)

A celebrated result of Angrist and Imbens (1995) is that their monotonicity condition grants a

causal interpretation to the standard Two-Stage Least Squares (2SLS) estimator. Vytlacil (2006)

shows that this monotonicity condition is equivalent to assuming an ordered choice model with ran-

dom thresholds. Thus, this monotonicity condition is commonly perceived as an intrinsic property

of treatment choices that exhibit a natural order, such as years of schooling. This assessment is

misleading. The primary feature of the condition is not the ordered nature of treatment choices. In-

stead, this monotonicity posits a relationship between IV-values and counterfactual choices whereby

higher rankings of the z-values can be associated with higher rankings of Ti(z). To clarify, it is help-

ful to express this condition in terms of sequences of IV-values and treatment choices:

Ordered Monotonicity Condition (OMC): There exists an ordered sequence of treatment

status t1 < · · · < tNT
in T and a sequence of IV-values z1, . . . , zNZ

in Z such that Ti(z1) ≤ · · · ≤
Ti(zNZ

) holds for each i ∈ I.

OMC is a slightly more inclusive version of the Angrist and Imbens (1995) condition. The

monotonicity holds whenever it is possible to assign values to treatment choice T such that a

sequence of IV-values produces an increasing sequence of counterfactual choices across all types.

In the binary choice model, OMC is equivalent to the monotonicity condition of LATE. To gain

intuition, consider the case where T ∈ {1, 2, 3}, Z ∈ {z1, z2, z3} and Ordered Monotonicity Ti(z1) ≤
Ti(z2) ≤ Ti(z3) holds. The response matrix that contains all the admissible response types of this

choice model is:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10[ ]
1 1 1 1 1 1 2 2 2 3 T (z1)
1 1 1 2 2 3 2 2 3 3 T (z2)
1 2 3 2 3 3 2 3 3 3 T (z3)

(22)

The response matrix contains ten types (columns) and adheres to the OMC because the choices

within each type, s1, . . . , s10, weakly increase as we move down from one row to the next. In the
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general case of NT choices and NZ IV-values, the OMC yields a total of
(
NT+NZ−1

NT−1

)
admissible

types. A choice model is said to be saturated w.r.t. OMC if its response matrix contains all types

that adhere to the monotonicity condition. Otherwise stated, it is not possible to add another type

without violating the condition. Conversely, a model is considered unsaturated w.r.t. OMC if the

response matrix contains only a subset of the possible types that adhere to the condition.

An example of an unsaturated response matrix w.r.t. OMC is E.3. Note that if we reorder

the IV-values of that matrix as (z1, z0, z2) and assign the choice values t1 = 1, t0 = 2, t2 = 3, we

obtain the following incentive matrix and its corresponding response matrix:

L =

1 2 3[ ]1 0 0 z1
0 0 0 z0
0 0 1 z2

, R =

s2 s1 s3 s4 s5 s6 s7 s8[ ]1 2 3 1 2 1 1 1 T (z1)
1 2 3 2 2 2 1 3 T (z0)
1 2 3 3 3 2 3 3 T (z2)

(23)

The treatment values of each type are non-decreasing as we progress from one row to another.

This pattern implies that Ti(z1) ≤ Ti(z0) ≤ Ti(z2) holds for all i ∈ I, thereby satisfying OMC. The

choice model is unsaturated with respect to OMC because it does not encompass all ten possible

types. Consequently, the choice restrictions imposed by the incentive matrix are more stringent

than those dictated by OMC alone.

We now investigate the pattern of choice incentives that justifies the OMC.

Supermodular Incentives: Incentives are termed supermodular if there exists a sequence of

IV-values z1, ..., zNZ
and a sequence of treatment choices t1, ...tNT

such that:

L[zk+1, tj ]−L[zk, tj ] ≤ L[zk+1, tj+1]−L[zk, tj+1], for any j = 1, ..., NZ − 1, and k = 1, ..., NZ − 1. (24)

The choice incentives L are supermodular if the difference in incentives across IV-values weakly

increases as we transition to higher-ranked treatment choices. This pattern includes choice in-

centives that progressively increase in response to higher values of both IV-values and treatment

statuses. We term an incentive matrix L strictly supermodular if all the inequalities in (24) are

strictly enforced. We are now equipped to state the following result:

Theorem T.2. OMC holds if and only if incentives are supermodular. Moreover, a model with

strictly supermodular incentives generates a saturated response matrix w.r.t. OMC.

Proof. See Appendix A.7.

Theorem T.2 asserts that supermodular incentives ensure the OMC. For notational conve-

nience, let ∆L be the row-difference of an incentive matrix L :

∆L[k, j] = (L[zk+1, tj ]−L[zk, tj ]); k = 1, .., NZ − 1; j = 1, ..., NT .

Incentives are supermodular if ∆L is weakly increasing in both row and column dimensions.

Furthermore, incentives are strictly supermodular the columns of ∆L are strictly increasing, namely,

14



∆L[k, j] < ∆L[k, j+1] for k = 1, ..., NZ −1. Examples of supermodular incentives for T ∈ {1, 2, 3}
and Z ∈ {z1, z2, z3} are:

L =

1 2 3[ ]
1 1 1 z1
1 2 4 z2
1 3 9 z3

⇒ ∆L =

[ ]
0 1 3
0 1 5

(25)

L =

1 2 3[ ]
1 0 0 z1
1/2 0 1/2 z2
0 0 1 z3

⇒ ∆L =

[ ]
−1/2 0 1/2
−1/2 0 1/2

(26)

L =

1 2 3[ ]
1 0 0 z1
0 0 0 z2
0 0 1 z3

⇒ ∆L =

[ ]
−1 0 0
0 0 1

(27)

The first incentive matrix (25) displays a Vandermonde matrix, which exhibits increasing incentives

in both row and column dimensions. This matrix satisfies strictly supermodularity, as the columns

of ∆L are strictly increasing. According to T.2, these incentives yield the saturated response

matrix displayed in (22).

The second incentive matrix (26) illustrates a pattern where z1 offers full incentives for choice

1, z3 offers full incentives for choice 3, and z2 splits incentives between choices 1 and 3. Strictly

supermodularity also holds since the columns of ∆L are strictly increasing. Again, T.2 ensures

that these incentives yield the saturated response matrix in (22).

The final incentive matrix (27) revisits the example in equation (23). This matrix exhibits

supermodularity since the columns in ∆L are weakly increasing. However, it does not fulfill the

criteria for strict supermodularity because the columns of ∆L are not strictly increasing. These

incentives generate the unsaturated response matrix in (23), which satisfies OMC and has fewer

types than the saturated version. It is noteworthy that having fewer types provides additional

identification power because the incentive matrix imposes more choice restrictions compared to the

incentives that generate the saturated response matrix.

4.2 Investigating Unordered Monotonicity

Heckman and Pinto (2018) propose an Unordered Monotonicity Condition that applies to treatment

choices that are not ordered. The condition states that for each pair of IV-values (z, z′) ∈ Z2 and

for each t ∈ T ,

1[Ti(z) = t] ≤ 1[Ti(z
′) = t] ∀ i or 1[Ti(z) = t] ≥ 1[Ti(z

′) = t] ∀ i. (28)

The condition means that for each of the choices t, an IV-change must induce all agents either

towards t or away from t. Heckman and Pinto (2018) show that this condition naturally arises in
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a range of IV settings where treatment choices do not have a clear ordering structure. They also

demonstrate that unordered monotonicity allows us to express the indicator for choice t as a latent

threshold indicator, similar to the result in Vytlacil (2002). Specifically, 1[T (z) = t] = 1[Pt(z) ≥
Ut], where Pt(z) = P (T = t|Z = z) is the propensity score, and Ut ∼ Unif [0, 1] is an unobserved

random variable with a uniform distribution in [0, 1] that is statistically independent of Z.13 Pinto

(2022) explores this choice representation to evaluate the Moving to Opportunity intervention as

mentioned in example E.4. Finally, the monotonicity condition can be equivalently stated in terms

of IV-sequences:

Unordered Monotonicity Condition (UMC): For each choice t, there exists a sequence of

IV-values (z
(t)
1 , ..., z

(t)
NZ

) in Z such that 1[Ti(z
(t)
1 ) = t] ≤ ... ≤ 1[Ti(z

(t)
NZ

) = t].

UMC posits that for each treatment choice t there is a sequence of the IV-values that in-

duce agents to choose t. These IV sequences can and do differ across choices t ∈ T . In contrast,

OMC employs a single sequence of IV-values that induces all agents to choose higher treatment

values.14 In practical terms, UMC means that it is possible to reorder the rows and columns of the

response matrix to generate a lower triangular matrix with respect to each choice t. We revisit the

example E.4 to illustrate this property:

R =

s1 s2 s3 s4 s5 s6 s7[ ]
th tm tl th th tm th T (zc)
th tm tl tm tl tm tm T (z8)
th tm tl tl tl tl th T (ze)

, Rh =

s1 s7 s4 s5 s2 s3 s6 th tm tm tl tm tl tm T (z8)

th th tl tl tm tl tl T (ze)

th th th th tm tl tm T (zc)

,

(29)

Rm =

s2 s6 s4 s7 s1 s3 s5 tm tl tl th th tl tl T (ze)

tm tm th th th tl th T (zc)

tm tm tm tm th tl tl T (z8)

, Rl =

s3 s5 s4 s6 s1 s2 s7 tl th th tm th tm th T (zc)

tl tl tm tm th tm tm T (z8)

tl tl tl tl th tm th T (ze)

.

(30)

The matrix R is the original response matrix of example E.4. Matrix Rh rearranges the columns

and rows of the original matrix to generate a lower triangular matrix w.r.t. th. This ordering reveals

that the number of types taking value th increase as we move along the IV-sequence z8, ze, zc.
15

This means that the IV-sequence z8, ze, zc induce agents to choose th and the following inequality

holds:

1[Ti(ze) = th] ≤ 1[Ti(z8) = th] ≤ 1[Ti(zc) = th] ∀ i ∈ I.
Matrices Rm and Rl show that it is also possible to generate lower triangular matrices w.r.t. tm

and tl via row and column permutations. Consequently, UMC is satisfied. In contrast, OMC

13Heckman and Pinto (2018) assume a general model where choice T = f(Z,V ) is a function of the instrument Z
and an absolutely continuous unobserved random vector V that is statistically independent of Z.

14UMC does not imply or is implied by OMC in multiple choice models, but they do collapse to the monotonicity
condition of Imbens and Angrist (1994) in the case of a binary choice.

15Under z8, only s1 takes the value th. Under ze, the types s1 and s7 take the value th, and under zc, the types
that take the value th are s1, s7, s4, s5.
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does not hold because it is not possible to assign values to treatment choices th, tm, tl that ensure

increasing sequences of counterfactuals Ti(zc) ≤ Ti(z8) ≤ Ti(ze) across all types.16 Finally, the

response matrix is said to be saturated w.r.t. the UMC because it is not possible to add another

response type without violating UMC.

A binary matrix is called lonesum if it can be transformed into lower triangular matrix via

row and column permutations (Ryser, 1957). Thus we can state that UMC holds of and only if

when all the binary matrices Bt ≡ 1[R = t]; t ∈ T are lonesum. A simple criterion to verify if

a response matrix satisfies the UMC is to check if the matrix does not contain a 2 × 2 submatrix

in which the diagonal contains a choice t and the off-diagonal does not.17 This prohibit pattern

prevents us to transform the response matrix into a lower triangular matrix of t-values as illustrated

in equations (29)–(30). For instance, the response matrix (23) satisfies OMC but does not satisfy

UMC since 2× 2 submatrix formed by columns s5, s6, and rows z1, z3, has choice 2 in its diagonal

but lacks choice 2 in its off-diagonal. For instance, the response matrix (23) satisfies OMC but does

not satisfy UMC, since the 2× 2 submatrix formed by columns s5, s6, and rows z1, z3 displays the

prohibit pattern: it has choice 2 on its diagonal but lacks choice 2 on its off-diagonal.

We introduce the concept of monotonic incentives, which ensures UMC in binary incentive

matrices:

Monotonic Incentives: for any z, z′ ∈ Z, L[z′, t] ≤ L[z, t]∀ t ∈ T or L[z′, t] ≥ L[z, t]∀ t ∈ T . (31)

Monotonic incentives imply the existence of an IV-sequence in which the incentives in L weakly

increase for all choices. In the case of 3× 3 binary matrices, there are four non-equivalent matrices

that display monotonic incentives:18

L =

t1 t2 t3[ ]
1 0 0 z1
1 1 0 z2
1 1 1 z3

, L =

t1 t2 t3[ ]
0 0 0 z1
1 1 0 z2
1 1 1 z3

, L =

t1 t2 t3[ ]
0 0 0 z1
1 0 0 z2
1 1 1 z3

, L =

t1 t2 t3[ ]
0 0 0 z1
1 0 0 z2
1 1 0 z3

.

These matrices satisfy the monotonic incentive criteria because L[z1, t] ≤ L[z2, t] ≤ L[z3, t]

holds for all t ∈ {t1, t2, t3}. They are lonesum matrices since they are binary and triangular. Indeed,

if L is binary, the concept of monotonic incentives is equivalent to L being lonesum. In particular,

the last incentive matrix above is equivalent to the one in the example E.4.19

Theorem T.3. UMC holds for all binary incentive matrices L satisfying monotonic incentives.

Proof. See Appendix A.8.

An alternative way to express the Theorem T.3 is:

16For instance, selecting choice values such that th < tm < tl results in an increasing sequence of treatment values
for response type s4 = [th, tm, tl]

′, but it fails to generate an increasing sequence for the type s7 = [th, tm, th]
′.

17See Heckman and Pinto (2018) for a discussion on these properties.
18Here, we only examine incentive matrices that do not contain identical rows.
19Two matrices are said to be equivalent if they have the same dimension and one can be transformed into the

other via row and column permutations.
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Corollary C.1. L is lonesum ⇒ Bt is lonesum for all t ∈ T .

Indeed, if the incentive matrix L is lonesum, then the monotonic incentives condition is satis-

fied. According to TheoremT.3, the choice rule imposes restrictions that result in a response matrix

R, which satisfies the UMC.Consequently, this implies that all binary matrices Bt ≡ 1[R = t] are

lonesum.

Monotonic incentives (31) in a simple criteria that ensures UMC. However, this criterion does

not cover all types of incentives that are capable of inducing UMC. To establish a more general

criterion, it is necessary to study the incentive patterns that induce monotonicity for a single choice

t, namely:

1[Ti(z) = t] ≤ 1[Ti(z
′) = t] ∀ i or 1[Ti(z) = t] ≥ 1[Ti(z

′) = t] ∀ i ∈ I and any z, z′ ∈ Z. (32)

The monotonicity condition above describes an indicator inequality in which a change in the in-

strument induce all agents towards choice t or away from choice t. The condition focuses on a single

choice t. UMC arises when this condition holds for all t ∈ T . The t-monotonic incentives, described

below, is central in generating the monotonicity condition of the choice indicator (32):

t-Monotonic Incentives: L is t-monotonic if, for any two IV-values z, z′ ∈ Z, we have that:

L[z′, t]−L[z, t] ≤ L[z′, t′]−L[z, t′] ∀ t′ ∈ T or L[z′, t]−L[z, t] ≥ L[z′, t′]−L[z, t′] ∀ t′ ∈ T . (33)

Incentives are termed t-monotonic if for any instrumental change the incentive difference for

the choice t is either the maximum or the minimum incentive difference among all treatment choices.

Theorem T.4. Monotonicity condition (32) holds for choice t if and only if L is t-monotonic.

Proof. See Appendix A.9.

The theorem states that t-monotonic incentives is a necessary and sufficient condition for the

t-monotonicity condition in (32) to hold. A natural consequence of the theorem is:

Corollary C.2. UMC holds if and only if L is t-monotonic for all t ∈ T .

The corollary follows directly from Theorem T.4 and the definition of UMC. It asserts that

UMC holds if and only if, for any IV-change, the incentive differences for each choice t ∈ T are

either the maximum or minimum of the differences across all choices. Consequently, the incentive

differences L[z′, t]−L[z, t] must exhibit at most two distinct values for all treatment values t ∈ T .

The following examples help clarify this property:
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L =

th tm tl[ ]
0 0 0 zc
0 1 1 z8
0 0 1 ze

∴

th tm tl
L[z8, t]−L[zc, t] 0 1 1
L[ze, t]−L[zc, t] 0 1 0
L[z8, t]−L[ze, t] 0 0 1

(34)

L =

t1 t2 t3[ ]
0 0 0 z1
1 0 0 z2
0 1 1 z3

∴

t1 t2 t3
L[z2, t]−L[z1, t] 1 0 0
L[z3, t]−L[z1, t] 0 1 1
L[z3, t]−L[z2, t] -1 1 1

(35)

L =

t1 t2 t3[ ]0 0 1 z1
0 1 2 z2
1 2 3 z3

∴

t1 t2 t3
L[z2, t]−L[z1, t] 0 1 1
L[z3, t]−L[z1, t] 1 2 2
L[z3, t]−L[z2, t] 1 1 1

(36)

L =

1 2 3[ ]1 0 0 z1
0 0 0 z0
0 0 1 z2

∴

1 2 3
L[z0, t]−L[z1, t] -1 0 0
L[z2, t]−L[z1, t] -1 0 1
L[z2, t]−L[z0, t] 0 0 -1

(37)

Equation (34) investigates the incentive matrix of example E.4. The second matrix dis-

plays the incentive differences corresponding to IV-changes (rows) across the treatment statuses

(columns). These incentive differences take only two values, zero or one. Thus, for each IV-

comparison, the incentive difference of any treatment status is either the maximum or the minimum

among the possible values. This property imply that the incentive matrix is t-monotonic for each

treatment choice and, according to C.2, UMC holds. This result was previously assessed by noting

that the matrix is a case of monotonic incentives (31).

Equation (35) presents a binary incentive matrix that does not exhibit monotonic incentives:

the IV-change from z2 to z3 decreases the incentive for choosing t1 while it increases the incentive

for choosing t2. However, the differences in incentives for each IV-change (row) take only two values

across the treatment statuses. Thus, UMC holds.

Equation (36) introduces an incentive matrix that is not binary. The incentive differences

associated with each IV-change also take at most two values across the treatment choices, which

implies UMC. See Appendix A.10 for further details on these models and their corresponding

response matrices.

Equation(37) reexamines the incentive matrix in (23), that induces OMC. The incentive differ-

ence L[z2, t]−L[z1, t] takes three values across t ∈ {1, 2, 3}. Thus, according to C.2, UMC does not

hold. This fact is corroborated by examining the response matrix in (23). The matrix displays the

prohibited pattern in the 2× 2 submatrix composed of types s5, s6 and rows z1, z2. The submatrix

contains the value two in its diagonal but does not contain the value in its off-diagonal.

We can further explore the properties of t-monotonic incentives. A simple method to check
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for t-monotonicity in binary incentive matrices is to split the incentive matrix L into L0
t and L1

t

such that L0
t contains the z-rows L[z, ·] such that L[z, t] = 0 and L1

t contains the z-rows such that

L[z, t] = 1. Under this notation, we can present the following result:

Corollary C.3. For any binary incentive matrix L, incentives are t-monotonic for a choice t ∈ T
if and only if matrices L1

t and L0
t are lonesum.

Proof. See Appendix A.11.

The corollary establishes that t-monotonicity is satisfied in a binary incentive matrix L if and

only if the sub-matrices L1
t and L0

t are lonesum. We use example E.5 to illustrate an application

of this corollary:

L =

0 2 4 (z2, z4)


0 0 0 (0, 0)

0 0 1 (0, 1)

0 1 0 (1, 0)
0 1 1 (1, 1)

∴

L0
2 =

0 2 4 (z2, z4)[ ]
0 0 0 ( 0 , 0 )
0 0 1 ( 0 , 1 )

L1
2 =

0 2 4 (z2, z4)[ ]
0 1 0 ( 1 , 0 )
0 1 1 ( 1 , 1 )

,

L0
4 =

0 2 4 (z2, z4)[ ]
0 0 0 ( 0 , 0 )
0 1 0 ( 1 , 0 )

L1
4 =

0 2 4 (z2, z4)[ ]
0 0 1 ( 0 , 1 )
0 1 1 ( 1 , 1 )

.

The first matrix displays the incentive matrix L of example E.5. Matrices L0
2 and L1

2 split

L according to the incentives of choice 2. These matrices do not contain the prohibit pattern (the

2×2 identity matrix). Thus, according to C.3, the incentive matrix L is 2-monotonic. Matrices L0
4

and L1
4 refer to choice 4. These matrices do not present the prohibited pattern either. Therefore,

L is also 4-monotonic. Incentives for choice 0, first column of L, are all zero. Thus L0
0 = L, and

the matrix displays the prohibit pattern in the columns associated with choices 2 and 4, and rows

(0, 1) and (1, 0). Therefore L is not 0-monotonic and UMC does not hold.

Although UMC does not hold, the incentive matrix exhibits t-monotonicity for choices 2 and

4. The monotonicity condition in (33) is satisfied for these two choices and there must exist IV-

sequences capable of inducing agents to select choices 2 and 4. This assertion can be verified by

reordering the rows and columns of the response matrix in (20) to produce lower triangular matrices

with respect to choices 2 and 4:
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R2 =

s6 s7 s2 s4 s5 s8 s1 s3 s9


2 4 0 4 4 4 0 4 4 T (0, 1)

2 2 0 0 0 4 0 0 4 T (0, 0)

2 2 2 2 4 4 0 4 4 T (1, 1)

2 2 2 2 2 2 0 0 4 T (1, 0)

R4 =

s9 s8 s3 s5 s4 s7 s1 s2 s6


4 2 0 2 2 2 0 2 2 T (0, 1)

4 4 0 0 0 2 0 0 2 T (0, 0)

4 4 4 4 2 2 0 2 2 T (1, 1)

4 4 4 4 4 4 0 0 2 T (0, 1)

The response matrices above corroborate the result that the monotonicity condition (33) holds

for choices 2 and 4. The same feature does not apply to choice 0 since the 2×2 submatrix of response

types s2 and s3 and rows T (0, 1) and T (1, 0) displays the prohibit pattern. Thereby UMC does

not hold. OMC does not hold either since no IV-sequence yields a weakly increasing sequence

of treatment choices across all types. Despite these results, we can still use the t-monotonicity

conditions to express the choice model by the following structural equations:

The response matrices above confirm that the monotonicity condition in (33) holds for choices

2 and 4. However, this condition does not extend to choice 0, as the 2×2 submatrix corresponding to

response types s2 and s3 and rows T (0, 1) and T (1, 0) exhibits a prohibited pattern. Consequently,

UMC is not satisfied. Likewise, OMC is also not fulfilled since no IV-sequence yields a weakly

increasing sequence of treatment choices across all types. Despite these findings, the t-monotonicity

conditions can still be employed to represent the choice model through the following structural

equations:

T =


0 if P2(Z) < U2 and P4(Z) < U4,

2 if P2(Z) ≥ U2,

4 if P4(Z) ≥ U4,

where Pt(Z) ≡ P (T = t|Z) denotes the propensity scores for t ∈ {2, 4} and Ut ∼ Unif [0, 1]; t ∈
{2, 4} stands for unobserved variables that are statistically independent Z. This structural repre-

sentation arises from the t-monotonicity property of choices 2 and 4, and the fact that choice 0

is the complement of choices 2 and 4. This representation allows us to express the counterfactual

outcomes Y (2), Y (4) as functions of propensity scores P2(Z) and P4(Z) respectively, while Y (0)

is a function of both propensity scores. Additional identification power emerges when assuming

functional forms for these counterfactuals or exploring baseline variables to generate variation in

propensity scores. In the case of continuous instruments, this structural representation can be used

to identify average treatment effects using the framework proposed by Lee and Salanié (2018).

It is helpful to summarize our analytical progress thus far. We have shown that the incentive

matrix of example E.3 generate a choice model satisfying only OMC. The choice incentives of

example E.4 generates a model adhering solely to UMC. Furthermore, the incentives of example E.5
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result in a choice model wherein either UMC or OMC is applicable. Next section explores incentives

that lead to choice models where both UMC and OMC hold.

4.3 Recoding Treatment into a Binary Indicator

The empirical analysis of IV models frequently involves the conversion of a multi-valued treatment

into a binary variable that indicates exposure to a treatment. A typical example is to recode years

of schooling into a dummy variable for college or high school graduation.20 Angrist and Imbens

(1995) argue that recoding the treatment status is problematic since the common 2SLS estimand

recovers a weighted average of effects that does not a have a clear causal interpretation. This

problem has been recently studied by Andresen and Huber (2021) and Rose and Shem-Tov (2023).

A simple example clarifies this issue.

Consider the IV model where T ∈ {0, 2, 4} denotes years of college education. Let Z ∈ {z0, z1},
be an instrument where z1 offers increasing incentives to greater years of college education while z0

is a baseline comparison that offers no choice incentives. The incentive matrix of this model and

its corresponding response matrix are given below:

L =

0 2 4[ ]
0 0 0 z0
0 1 2 z1

and R =

s1 s2 s3 s4 s5 s6[ ]
0 2 4 0 0 2 T (z0)
0 2 4 2 4 4 T (z1)

The incentive matrix above satisfies strict supermodularity. According to Theorem T.2, these

incentives yield a saturated response matrix concerning OMC. Thus, the response matrix consists

of six types s1 through s6 ensuring that Ti(z0) ≤ Ti(z1) holds for all i ∈ I. Types s1 through s3

are always-takers, while s4 through s6 are compliers.

Suppose a researcher intends to evaluate the causal effect of four-year college graduation and

thus recodes the treatment T into the binary variable D = 1[T = 4] that indicates whether the

agent has completed a four-year college education. The Wald estimand of the 2SLS regression

recovers the following causal response:

E(Y |Z = z1)− E(Y |Z = z0)

E(D|Z = z1)− E(D|Z = z0)
=
E(Y (4)− Y (0)|s5)P (s5) + E(Y (4)− Y (2)|s6)P (s6)

P (S ∈ {s5, s6})︸ ︷︷ ︸
Intended Effect (extra-margin)

+
E(Y (2)− Y (0)|s4)P (s4)

P (S ∈ {s5, s6})︸ ︷︷ ︸
Unintended Effect (intra-margin)

This estimand comprises an intended effect and an unintended one. The intended effect is

the weighted average of the causal effect of four-year college graduation against no college, namely,

E(Y (4) − Y (0)|s5), and the effect of four-year versus two-year college, E(Y (4) − Y (2)|s6). These
effects refer to types s5 and s6 which display extra-margin variation: T shifts from 0 or 2 to 4

when D changes from zero to one. The unintended effect evaluates the causal effect of two-year

20Numerous empirical studies undertake a binary conversion of a multi-valued treatment, including Aizer and Doyle
(2015); Arteaga (2021); Bhuller et al. (2020); Black et al. (2005); Carneiro et al. (2011); Finkelstein et al. (2012);
Kane and Rouse (1995); Mogstad and Wiswall (2016).
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college relative to no college, E(Y (2) − Y (0)|s4). This effect refers to type s4, which displays an

intra-margin variation: T changes from 0 to 2 while the binary indicator D remains constant.21

A solution to this problem is to prevent intra-margin treatment variation by eliminating type s4

from the response matrix.

Rose and Shem-Tov (2021) coined the term Extensive Margin Compliers Only (EMCO) for a

monotonicity condition that prevents intra-margin treatment variation in IV models with a binary

instrument Z ∈ {z0, z1} and ordered treatment T ∈ {0, 1, ..., NT }, namely:

Ti(z0) ≤ Ti(z1)∀ i and Ti(z1) > Ti(z0) ⇒ Ti(z0) = 0 ∀i.
Their condition combines a monotonicity condition with a choice restriction to ensure that individ-

uals can only switch from no treatment, Ti(z0) = 0, to some treatment Ti(z1) ̸= 0. This restriction

clearly prevents the problem of intra-margin variation. We build on their work to devise a more

general condition that prevents intra-margin variation and allows for unordered treatment and cat-

egorical instruments. For a given treatment status t ∈ T and any for any z, z′ ∈ Z, let the t-EMCO

condition be defined as:

1[Ti(z) = t] ≤ 1[Ti(z
′) = t]∀ i and 1[Ti(z) = t′] ≥ 1[Ti(z

′) = t′];∀ i ∈ I, t′ ∈ T \ {t}, (38)

or 1[Ti(z) = t] ≤ 1[Ti(z
′) = t]∀ i and 1[Ti(z) = t′] ≥ 1[Ti(z

′) = t′];∀ i ∈ I, t′ ∈ T \ {t}. (39)

The condition means that a change in the instrument induces agents to switch their decisions

towards choice t and away from any other choice. It ensures that any treatment switch must

involves the choice t, that is, if Ti(z) ̸= Ti(z
′) then it must be the case that Ti(z) = t or Ti(z

′) = t.

The condition is also equivalent to stating that there is an IV-sequence z1, ..., zNZ
such that:

1[Ti(zk) = t] ≤ 1[Ti(zk+1) = t] ∀ i, (40)

and 1[Ti(zk) = t′] ≥ 1[Ti(zk+1) = t′] ∀ i, and ∀ t′ ∈ T \ {t}. (41)

The t-EMCO is a particular case of UMC in which the IV-sequence that induces individuals

to select treatment t also prevents agents from switching to any of the other choices t′ ∈ T \ t.
The t-EMCO condition addresses the issue of intra-margin variation by ensuring that all changes in

treatment choice must involve t. Specifically, if Ti(zk) ̸= Ti(zk′), then either Ti(zk) = t or Ti(zk′) = t.

The equation below displays the saturated response matrix for T ∈ {0, 2, 4} and Z ∈ {z1, z2, z3}
when t-EMCO holds for t = 4:

R =

s1 s2 s3 s4 s5 s6 s7 0 2 4 0 2 0 2 T (z1)

0 2 4 4 4 0 2 T (z2)

0 2 4 4 4 4 4 T (z3)

(42)

Response types s1 through s3 are the always-takes. The remaining types, s4 through s7 are

21Another drawback highlighted by Andresen and Huber (2021) is that the binary treatment violates the IV
exclusion restriction since the IV affects the counterfactual outcomes through channels beyond D.
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the compliers. UNC holds since:

1[Ti(z1) = 4] ≤ 1[Ti(z2) = 4] ≤ 1[Ti(z3) = 4],

and 1[Ti(z1) = t′] ≥ 1[Ti(z2) = t′] ≥ 1[Ti(z3) = 4] for t′ ∈ {0, 1}.

Compliers do not display intra-margin variation since all choice changes include 4 : choices are 4 or

0 in s4, s6, and 4 or 2 in s5, s7. This feature ensures that the Wald estimand evaluates a weighted

average of only the intended treatment effect of completing four-year college graduation (T = 4)

versus not (T ̸= 4).

The t-EMCO is also a special case of OMC since the inequality Ti(zk) ≤ Ti(zk+1) in (40)–(41)

is satisfied for any assignment of treatment values where t is the minimum value among treatment

choices. It is easy to see that a response matrix that is saturated w.r.t. EMCO, is also saturated

w.r.t. UMC, but is unsaturated w.r.t. OMC. The theoretical implications associated with both

OMC and UMC apply. For instance, the 2SLS estimand computes a weighted average of per-unit

treatment effects (Angrist and Imbens, 1995), and each choice can be described by a separable

equation on the propensity score and a latent variable (Heckman and Pinto, 2018).

An incentive matrix L is said to have Constant Incentive Gaps w.r.t. a choice t (t-CIG) if for

any z, z′ ∈ Z we have that:

t-CIG : L[z, t′]−L[z′, t′] = L[z, t′′]−L[z′, t′′] ∀ t′, t′′ ∈ T \ {t}. (43)

The t-CIG condition states that the incentive difference between two IV-values for all choices

other than t is constant. It is equivalent to assuming that the incentives are separable in Z and T,

namely, L[z, t′] = f(z) + g(t′) for t′ ∈ T \ {t} where f(·) and g(·) are any real-valued functions.22

Two examples of t-CIG incentives for t = 4 that apply to our college decision model are:

L =

0 2 4[ ]
0 0 0 z3
0 0 1 z2
0 0 2 z1

, and L =

0 2 4[ ]
0 1 0 z3
1 2 0 z2
3 4 0 z1

. (44)

The first incentive matrix offers increasing incentives to choose 4-year college and no incentives

for the remaining choices. The matrix satisfies t-CIG condition for t = 4 because L[z, t′]−L[z′, t′] =

0 holds for t′ ∈ {0, 2} and any z ̸= z′. The second incentive matrix displays increasing incentives

for choices 0 and 2. It satisfies the 4-CIG condition because L[z2, t
′]−L[z1, t

′] = 1 for all t′ ∈ {0, 2}
and L[z3, t

′]−L[z2, t
′] = 2 for all t′ ∈ {0, 2}. Either of these incentive matrices yields the response

matrix in (42). The following theorem provides a general result connecting t-CIG and t-EMCO.

Theorem T.5. t-EMCO holds if and only if t-CIG is satisfied.

Proof. See Appendix A.12.

22It is easy to see that t-CIG incentives satisfy supermodularity (24), but not in a strictly manner. Also, t-CIG
incentives satisfy the t-Monotonic condition (33) for all t ∈ calT.
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The theorem states that the t-CIG incentives are a necessary and sufficient condition to gener-

ate a response matrix where t-EMCO holds. This means that applying the choice rule (9) to t-CIG

incentives, such as in (44), generates choice restrictions that yield a response matrix that satisfies

the t-EMCO condition.

Corollary C.4. Let L be an incentive matrix where t-CIG (43) holds. The generated response

matrix is saturated w.r.t. t-EMCO (38) if and only if L[z, t]−L[z′, t] ̸= L[z, t′]−L[z′, t′] for t′ ̸= t

and all z, z′ ∈ Z such that z ̸= z′.

Proof. See Appendix A.13.

The corollary examines incentives that satisfies the t-CIG condition. This means that incentive

differences for any IV-change remain constant across all choices other than t. The corollary states

that if the incentive difference for choice t differs from that for the other choices, the generated

response matrix is saturated w.r.t. t-EMCO. The t-CIG incentive matrices in (44) satisfy this

condition. Therefore, these incentive matrices produce the saturated response matrix displayed in

(42).

5 An Empirical Exercise

We use the incentives framework outlined in the previous section to examine the impact of human

capital on the illegal migration of poor Mexican families to the US.

The US hosts approximately 12 million undocumented residents, with nearly half of whom

originating from Mexico. According to Borjas (1987), migration decisions are positively influenced

by wage differentials between native and foreign countries, though these benefits are mitigated

by the costs associated with migration. His research suggests a negative selection in migration

patterns, wherein lower-skilled workers disproportionately gain from relocating to the U.S. This

finding is further substantiated by Angelucci (2015), who demonstrates that Oportunidades, Mex-

ico’s foremost anti-poverty initiative, has stimulated the emigration of lower-skilled, undocumented

migrants to the US.

Behrman et al. (2005) emphasize that the impact of Oportunidades on school attendance

enhances basic English proficiency and analytical skills, both of which are pivotal for success in

the US labor market. Their analysis suggests a non-monotonic relationship between education

and migration: acquiring fundamental skills increases the propensity to migrate, while further

accumulation of human capital reduces this likelihood by making the domestic labor market in

Mexico more attractive than the US labor market. This pattern is also supported by Chiquiar and

Hanson (2005) and Hanson (2006).

The Mexican education system is structured into three fundamental stages: primaria (primary

education), encompassing grades 1 through 6; secundaria (junior high school), covering grades 7

25



through 9; and preparatoria (high school), consisting of grades 10 through 12. Table 1 lists the

main skills taught at each education level. Basic English lessons are introduced at secundaria.

Following Behrman et al. (2005), we posit a non-monotonic relationship between educational

attainment and migration. Specifically, completing secundaria is hypothesized to positively influ-

ence the propensity to migrate, while advancement from secundaria to preparatoria is expected to

have a negative impact on migration.

We analyze a decade of data from the Oportunidades Program to evaluate the impact of edu-

cational attainment on migration patterns. Oportunidades is a pioneering initiative in Mexico that

employs conditional cash transfers to enhance schooling attainment. The program was commenced

in 1997 and targeted impoverished Mexican families living in poor rural areas. It randomly assigned

505 villages to either a treatment group (320 villages) or a control group (185 villages). Families

in the treated villages received bi-monthly cash transfers, which often amounted to 20% to 30%

of their household income. The transfer was contingent upon their school-age children attending

school. Households in control villages had to wait for two years before receiving these benefits. For

a detailed description of the program, see (Gertler, 2004).

Our study utilizes panel data from 1997 to 2007. Schooling data were collected in 2003, and

census data from 1997, 2003, and 2007 were employed to analyze migration patterns. The sample

includes over 3,000 individuals living in impoverished rural areas of Mexico. We assess the impact

of Oportunidades on U.S. migration among individuals aged 12 to 13 at the program’s onset.

This cohort is the most affected by the differing schooling incentives between the treatment and

control groups.23 Approximately 18% of males and 10% of females of our sample migrate. Most

of them move to the US between the ages of 16 and 22. Table 5 presents a statistical description

of baseline variables by gender. As anticipated, baseline variables exhibit a balanced distribution

across randomization arms, and none of the differences in means between the treatment groups are

statistically significant.

Traditional Evaluation

We denote the randomization arms as Z ∈ {z0, z1}, where z1 represents the treated group and

z0 is the control group. Our primary outcome is the migration indicator Y ∈ {0, 1}. Given that

the principal aim of the Oportunidades Program is to improve educational attainment, a natural

modeling approach is to define the treatment T in terms of years of schooling and to assume the

OMC, specifically, Ti(z0) ≤ Ti(z1) for all i ∈ I. The OMC enables us to use 2SLS regressions

to evaluate the causal effect of the schooling treatment T on the migration outcome Y . Table ??

displays the estimates from this widely used method.

23Two criteria define the age range: (1) the lower boundary is set high enough to ensure that the schooling survey
in 2003 measures the final schooling attainment and (2) The upper boundary is set low enough to include individuals
who were 22 years old in 2007 when the migration data was collected.
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Table 2: Statistical Description of Baseline Variables

Males Females

Treated Control Diff. Treated Control Diff.

Mean Mean Means Mean Mean Means

Age at Onset 11.930 11.929 0.000 11.872 11.909 -0.036
s.e. 0.572 0.553 0.028 0.567 0.584 0.029

Family Speaks Indigenous Language 0.417 0.469 -0.052 0.409 0.425 -0.016
s.e. 0.493 0.499 0.025 0.492 0.495 0.025

Household Assets Index 624.27 616.39 7.880 618.81 625.23 -6.428
s.e. 88.546 98.092 4.685 89.707 91.044 4.542

Number of Household Members 7.581 7.476 0.105 7.625 7.594 0.031
s.e. 2.195 2.097 0.106 2.118 2.049 0.104

Household Members Younger than 17 4.739 4.702 0.037 4.789 4.767 0.022
s.e. 1.784 1.736 0.087 1.705 1.702 0.085

County USA Migration Index -0.155 -0.170 0.015 -0.115 -0.183 0.068
s.e. 0.843 0.919 0.045 0.878 0.908 0.046

Home Ownership 0.969 0.951 0.018 0.971 0.955 0.016
s.e. 0.174 0.216 0.010 0.167 0.207 0.010

Schooling at Onset 4.546 4.407 0.140 4.535 4.611 -0.076
s.e. 1.618 1.630 0.081 1.577 1.596 0.080

Sample Size 1027 674 1048 645

This columns of this table presents the statistical description of baseline variables by gender. The first row associated to each
variable displays the treatment mean, control mean and the mean difference for males and females. The second row displays
the standard deviation of the treated and control means and the standard error for the difference-in-means estimator.

The table presents estimates from four models for males and females. The models differ in the

set of baseline variables they control for.24 Panel A presents reduced-form estimates of the effect of

opportunities on migration. The intervention consistently raised migration rates by approximately

three percentage points for males. This result corresponds to a 22% increase in migration likelihood

compared to control males. Panel B presents the first-stage regressions. We find that Oportunidades

led to an increase of roughly one-fourth of a school year for males.

Panel C displays the 2SLS estimates where the random assignment of Oportunidades acts as

an instrumental variable (IV) to evaluate the impact of education on migration. The estimated

coefficient for males is around 0.060 and is statistically significant at the 10% significance level.

Panel D displays the OLS estimates of schooling on migration, which are not statistically significant.

24Model 1 does not include conditioning variables. Model 2 includes age at onset and county migration index. Model
3 adds family characteristics: family members speaking an indigenous language, number of household members, and
number of teenagers. Model 4 includes household assets and house ownership.
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Table 3: Standard 2SLS Analysis on the Effect of Schooling and Migration

Males Females
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Panel A: Effect of Oportunidades on Migration (Reduced Form)

Migration 0.037 0.033 0.029 0.031 0.005 -0.002 -0.001 0.001
s.e. 0.020 0.019 0.018 0.018 0.016 0.016 0.015 0.015

p-val 0.061 0.073 0.113 0.094 0.753 0.873 0.937 0.965

Panel B: Effect of Oportunidades on Schooling (First Stage)

Schooling 0.502 0.522 0.533 0.521 0.022 0.044 0.050 0.076
s.e. 0.121 0.122 0.122 0.122 0.126 0.128 0.128 0.128

p-val 0.000 0.000 0.000 0.000 0.860 0.733 0.695 0.554

Panel C: Effects of Schooling on Migration (2SLS estimates)

2SLS 0.073 0.064 0.055 0.059 0.227 -0.057 -0.024 0.009
s.e. 0.043 0.039 0.037 0.038 1.478 0.390 0.313 0.205

p-val 0.092 0.099 0.135 0.118 0.878 0.885 0.938 0.965

Panel D: OLS estimates of the impact of Schooling on Migration

OLS -0.005 0.000 0.002 0.002 -0.001 -0.001 -0.001 -0.001
s.e. 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003

p-val 0.259 0.980 0.663 0.549 0.803 0.719 0.801 0.792

The table comprises four panels. Panel A displays the causal effects of Oportunidades on migration. Panel B displays the
effects Oportunidades on Schooling (measured in 2003). Panel C evaluates the causal effect of schooling on migration using
the Oportunidades random assignment as an instrument for schooling. Panel D presents the OLS regression of Migration
on schooling. Each panel presents the estimates by gender across four models that differ in terms of conditioning variables.
Model 1 does not use conditioning variables. Model 2 employs age at onset and county migration index. Model 3 adds family
characteristics: family members speak indigenous language, number of household members, and number of teenagers. Model
4 includes household assets and house ownership. Estimates consists on the effect, its standard error and the double-sided
p-value associated with inference that tests if the effect is equal to zero. All estimates are based on the standard OLS and 2SLS
regressions. Inference employs clustered errors at village levels.

The 2SLS analysis provides a valuable framework for assessing the overall impact of educa-

tion on migration. Specifically, the 2SLS coefficient estimates a weighted average of the per-unit

treatment effect across individuals whose educational attainment increases as the instrument shifts

from z0 to z1. However, this causal interpretation poses challenges when attempting to elucidate

the non-monotonic relationship between education and migration, which is the focus of our inves-

tigation. To address this complexity, we propose a stylized model that incorporates the underlying

incentives influencing educational choices and the observed patterns in school choices.

5.1 Stylized Model

Figure ?? presents the distribution of educational attainment at the onset of the intervention in 1997

and six years post-intervention in 2003. The data reveal a significant concentration of education
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levels around the completion of secundaria (9 years of schooling). This schooling stage is critical

for our analysis since it is where basic English skills are taught. We explore this fact to construct a

stylized model that considers the completion of secundaria as a pivotal milestone in assessing the

impact of education on migration.

We define the schooling index T ∈ {1, 2, 3}, where T = 1 represents education below secundaria

(primarily encompassing the completion of primaria), T = 2 indicates the completion of secundaria,

and T = 3 denotes education beyond secundaria.

We proceed to examine the incentives of the Oportunidades program through the lens of our

schooling index. Our sample comprises an age cohort of students making decisions about completing

secundaria. Students in the treatment group (z1) received cash transfers throughout their schooling

years, thereby providing them with increasing incentives to complete secundaria and pursue further

education. Conversely, students in the control group (z0) received cash transfers only after a

few years. These delayed incentives missed the critical period when students typically complete

secundaria. Nonetheless, those who did complete secundaria were subsequently incentivized to

continue their studies. This incentive scheme is represented by the following incentive matrix:

L =

1 2 3[ ]
0 0 1 z0
0 1 2 z1

(45)

The incentive matrix provides increasing benefits for the treated participants to continue studying,

while offering delayed incentives for control participants to pursue schooling beyond secundaria.

Note that the incentive matrix (45) is t-monotonic for all choices. According to T.4 these incentives

must lead to a response matrix that satisfy UMC. Moreover, the incentives are supermodular, but

not strictly supermodular. According to T.2, these incentives lead to a response matrix is non-

saturated w.r.t. OMC.

Applying the Choice Rule (9) to incentives (45) generates the following choice restrictions:

Ti(z0) = 2 ⇒ Ti(z1) ̸= 1 and Ti(z1) ̸= 3
Ti(z0) = 3 ⇒ Ti(z1) ̸= 1 and Ti(z1) ̸= 2
Ti(z1) = 1 ⇒ Ti(z0) ̸= 2 and Ti(z0) ̸= 3
Ti(z1) = 2 ⇒ Ti(z0) ̸= 3
Ti(z1) = 3 ⇒ Ti(z0) ̸= 2

(46)

The resulting response matrix is:

R =

s11 s22 s33 s12 s13[ ]
1 2 3 1 1 T (z0)
1 2 3 2 3 T (z1)

. (47)

The response matrix contains three always-takers s11, s22, s33, and two compliers s12, s13. As

expected, the matrix satisfies UMC since the matrix does not display any prohibited pattern. The
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response matrix satisfies OMC since Ti(z0) ≤ Ti(z1) holds for all agents. The matrix is not saturated

w.r.t. OMC since it lacks the type [2, 3]′.

The identification analysis stems from Theorem T.1. All type probabilities are (just) identi-

fied. Always-taker probabilities are given by:25

P (s11|X) = P (T = 1|z1, X),

P (s22|X) = P (T = 2|z0, X),

and P (s33|X) = P (T = 3|z0, X).

The probabilities for compliers are identified by:

P (s12|X) = P (T = 2|z1, X)− P (T = 2|z0, X),

and P (s22|X) = P (T = 3|z1, X)− P (T = 3|z0, X).

There are six counterfactual outcomes that are identified. Counterfactual outcomes for always-

takers are given by:

E(Y (1)|s11) = E(Y |T = 1, z1, X),

E(Y (2)|s22) = E(Y |T = 2, z0, X),

and E(Y (3)|s33) = E(Y |T = 3, z0, X).

The remaining counterfactuals are identified as LATE-type parameters:

E(Y (1)|S ∈ {s12, s13}, X) = LATEX(1[T = 1]),

E(Y (2)|S = s12, X) = LATEX(1[T = 2]),

E(Y (3)|S = s13, X) = LATEX(1[T = 3]),

where: LATEX(W ) ≡ E(Y ·W |Z = z1, X)− E(Y ·W |Z = z0, X)

E(W |Z = z1, X)− E(W |Z = z0, X)
.

We are most interested in two causal effects: E(Y (2) − Y (1)|S = s12), which is the causal effect

of completing secundaria on migration, and E(Y (3)− Y (1)|S = s13), which is the causal effect of

studying beyond secundaria on migration. Unfortunately, these effects are only partially identified

since we cannot disentangle E(Y (1)|S ∈ {s12, s13}) into E(Y (1)|S = s12) and E(Y (1)|S = s13)

without additional assumptions.

A common solution to this problem of partial identification is to invoke the assumption of

comparable compliers. Recent examples of this type of assumption include Mountjoy (2022) and

Navjeevan et al. (2023). In our case, we have that:

Comparable Compliers: Y (1) ⊥⊥ S|(T (z0) ̸= T (z1), X). (48)

The assumption states that, conditioned on being a complier and on baseline variables X, the

counterfactual outcome Y (1) is independent of the types. It applies only to agents that choose to

25We use P (s|X) and P (T = t|z,X) as short-hand notation for P (S = s|X) and P (T = t|Z = z,X) respectively.
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not complete secundaria under no incentives (z0) but would pursue additional schooling if Oportu-

nidades incentives were available (z1). It implies that the migration outcome for those who choose

to not complete secundaria are comparable. Effectively, this assumption establishes the moment

equality E(Y (1)|S = s12, X) = E(Y (1)|S = s13, X), which enables us to solve the problem of

partial identification.

5.2 Estimating Type Probabilities

We devise a doubly robust estimator that employs machine learning techniques to evaluate causal

parameters. The method stems from the work of Navjeevan, Pinto, and Santos (2023) and it has

desirable properties commonly shared by this type of estimator. The method yields asymptotically

normal estimators that guarantee double robustness against misspecification (Robins et al., 1995)

and possesses the mixed bias property in (Chernozhukov et al., 2018). The method also bene-

fits from a variety of plug-in machine learning techniques, as described in Smucler et al. (2019),

Chernozhukov et al. (2022), and Chernozhukov et al. (2022).

To gain intuition, we examine the identification of type probabilities in greater detail. Let

PT |X(t) ≡ [P (T = t|Z = z0, X), P (T = t|Z = z1, X)]′ be the 2 × 1 vector of choice probabilities

across IV-values, and PT |X ≡ [PT |X(1)′,PT |X(2)′,PT |X(3)′]′ be the 6×1 vector of propensity scores.

Moreover, let the 5× 1 vector of type probabilities conditioned on X be:

PS|X = [P (s11|X), P (s22|X), P (s33|X), P (s12|X), P (s13|X)]′.

These vectors are related by the following equation PT |X = BPS|X , where B ≡ [B′
1,B

′
2,B

′
3]
′ is

the 8 × 5 binary matrix that stacks the indicator matrices Bt = 1[R = t] across the treatment

choices. The response matrix R in (47) enable us to express each of the type probabilities as a

linear combination of the propensity scores:

P (S = s|X) = νsPZ|X such that νs ≡ ℓ′s(B
′B)−1B′. (49)

The term νs is primary in our analysis. It is a known 6× 1 vector defined as ℓ′s(B
′B)−1B′, where

ℓs is a 5 × 1 canonic vector that takes value one for type s and zero otherwise. Vector νs can

be understood as a map νs(z, t) from the support of (Z, T ) to R. In this notation, we can rewrite

equation (49) as:

P (S = s|X) =
∑
t∈T

∑
z∈Z

νs(z, t)P (T = t|Z = z,X). (50)

To construct the doubly robust estimator, we represent the type probability as the expectation of

a function κ such that P (S = s) = E(κs(T,Z,X)).26 The doubly robust estimator is based on the

following the orthogonal score representation of type probabilities:

P (S = s) =
∑
t∈T

EZX

(
κs(t, Z,X) ·

(
1[T = t]− P (T = t|Z,X)

))
+
∑
t∈T

EX

∑
z∈Z

νs(z, t)P (T = t|Z = z,X)

 ,

26See Navjeevan, Pinto, and Santos (2023) for a in-depth discussion of the rationale of this approach.
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where EZX(·) is an expectation over the joint distribution of (Z,X) and EX(·) is an expectation

over X. The identifying moment condition has two nuisance parameters, the function κs(t, Z,X)

and the propensity score P (T = t|Z,X). We assess these nuances via plug-in estimators. We

evaluate the propensity score P (T = t|Z,X) by h(Z,X)βt, and the kappa function κs(t, Z,X) by

h(Z,X)γs,t, where βt,γt are p-dimensional linear coefficients and h(Z,X) = [b1(Z,X), ..., bp(Z,X)]′

denotes a p-dimensional vector of function of (Z,X) including all the pairwise interactions of these

variables. In our application, h(Z,X) comprises X, Z, and their interaction. Appendix A.14

presents a detailed description of the estimation algorithm.

Table 4 presents the estimated probabilities for each type. The aggregate probability for

the always-takers is approximately 0.90, indicating that 90% of the sample comprises students

who persist with their schooling choice towards secundaria irrespective of their allocation to either

treatment or control groups. The probability for type s11 stands at around 0.43, suggesting that

nearly half of the sample consists of students who do not complete secundaria, regardless of the

incentives from Oportunidades. The probability associated with type s22 is close to 0.34, denoting

that a third of the sample consistently chooses to finalize their secundaria. Lastly, the probability

for type s33 is approximately 0.13, implying that a mere 13% of the students opt to pursue education

beyond secundaria, irrespective of receiving the Oportunidades incentives or not.

The sum of the probabilities for compliers, s12 and s13, totals 0.093. This means that about

9% of the students change their choice towards completing secundaria when the incentives provided

by Oportunidades are available. The majority of these students, about 7%, consist of participants

of type s12 who shift from not completing secundaria to completing it. A smaller share of the

sample, about 2%, comprises compliers that change from not completing secundaria when assigned

to the control to studying beyond secundaria when assigned to the treatment.

5.3 Estimating Causal Effects

We now describe the doubly robust estimator employed to evaluate the counterfactual outcomes.

This discussion parallels our earlier examination of type probabilities.

Let EY |X(t) ≡ [E(Y · 1[T = t]|Z = z0, X), E(Y · 1[T = t]|Z = z1, X)]′ be the 2 × 1 vector

of conditional outcome moments. As mentioned, Bt = 1[R = t] denotes the binary matrix that

indicates which elements in the response matrix R in (47) takes value t ∈ {1, 2, 3}.We can then ex-

press the five identified counterfactual outcomes – E(Y (1)|s11, X), E(Y (2)|s22, X), E(Y (3)|s33, X)

E(Y (2)|s12, X) and E(Y (3)|s13, X) – in the following fashion:

E(Y (t)|S = s|X)P (S = s|X) = νs,tEZ|X(t) such that νs,t ≡ ℓ′sB
′
t(BtB

′
t)

−1, (51)

where ℓs is a 5×1 canonic vector that indicates type s. Similar to our analysis of type probabilities,

we can express νs,t as a function νs,t(z) from the support of Z to R. In this notation, we can rewrite
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Table 4: Type Probabilities and Causal Effects for Males

Type Probabilities Model 1 Model 2 Model 3 Model 4

P (S = s11) 0.436 0.436 0.435 0.436
s.e. 0.016 0.016 0.016 0.016

p-val 0.000 0.000 0.000 0.000

P (S = s22) 0.337 0.338 0.337 0.340
s.e. 0.019 0.019 0.019 0.019

p-val 0.000 0.000 0.000 0.000

P (S = s33) 0.133 0.133 0.130 0.131
s.e. 0.014 0.014 0.014 0.014

p-val 0.000 0.000 0.000 0.000

P (S = s44) 0.071 0.071 0.070 0.068
s.e. 0.024 0.024 0.025 0.025

p-val 0.004 0.004 0.005 0.007

P (S = s55) 0.022 0.023 0.026 0.026
s.e. 0.018 0.018 0.018 0.018

p-val 0.206 0.181 0.139 0.149

This table presents the estimates of type probabilities according to the doubly robust orthogonal score estimator described in
this section. Estimates are presents for four models that vary in the set of baseline variables X that we seek to condition on.
Model 1 does not use baseline variables. Model 2 employs age at onset and county migration index. Model 3 adds family
characteristics: family members speak indigenous language, number of household members, and number of teenagers. Model
4 includes household assets and house ownership. Estimates consists on the probability, its standard error and the two-sided
p-value associated with inference that tests if the effect is equal to zero. Standard errors are computed using the multiplier
bootstrap method.

equation (51) as:

E(Y (t)1[S = s]|X)P (S = s|X) =
∑
z∈Z

νs,t(z)E(Y · 1[T = t]|Z = z,X). (52)

It is also worth noting that the response types probability associated with the identified outcome

counterfactuals can be identified as:

P (S = s|X) =
∑
z∈Z

νs,t(z)E(1[T = t]|Z = z,X). (53)

The doubly robust estimator comprises the joint evaluation of the expectation E(Y (t)1[S = s])

in (52), the probability P (S = s|X) and then taking the ratio of these estimates. Note that both

problems are related since they are associated with the same identification function νs,t(z). The

estimator for E(Y (t)1[S = s]) is based on the following orthogonal score:

E(Y (t)1[S = s]) = EZX

(
Y κs,t(Z,X) ·

(
Y 1[T = t]− E(Y 1[T = t]|Z,X)

))
+ EX

∑
z∈Z

νs,t(z)E(Y · 1[T = t]|Z = z,X)

 .

The function kappa is such that E(Y κs,t(Z,X)) = E(Y (t)1[S = s]) and E(κs,t(Z,X)) = P (S =
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s). The estimator contains three nuance parameters: the propensity score P (T = t|Z,X) is es-

timated as by h(Z,X)βt, the outcome expectation E(Y · 1[T = t]|Z = z,X) by h(Z,X)θt, and

the kappa function κs,t(t, Z,X) by h(Z,X)γs,t, where βt,θt,γt are p-dimensional linear coefficients

and h(Z,X) comprises X, Z, and their interaction. The steps of the estimator are closely related

to the estimation of type probabilities. Appendix A.15 describes the estimation algorithm in great

detail.

Our goal is to evaluate two causal effects: E(Y (2) − Y (1)|S = s12) and E(Y (2) − Y (1)|S =

s13). The procedure outlined in Appendix A.15 is tailored to estimate any counterfactual outcome

that is identified according to the response matrix R (47). These include E(Y (2)|S = s12) and

E(Y (3)|S = s13). The procedure could also be used to evaluate E(Y (1)|S ∈ {s12, s13}), since
it is also identified. The procedure however is not suitable to evaluate E(Y (1)|S = s12) and

E(Y (1)|S = s13) separately.

The additional assumption of comparable compliers (48) enable us to disentangle E(Y (1)|S ∈
{s12, s13}) into E(Y (1)|S = s12) and E(Y (1)|S = s13). The assumption implies that E(Y (1)|S ∈
{s12, s13}|X) = E(Y (1)|S = s12|X) and E(Y (1)|S ∈ {s12, s13}|X) = E(Y (1)|S = s13|X). Note

however that this assumption does not imply the unconditional equality E(Y (1)|S ∈ {s12, s13}) =
E(Y (1)|S = s12) = E(Y (1)|S = s13) because the distribution of baseline variables X may differ

across types s12 and s13. The modification of the procedure is necessary to account for the difference

in the distribution of baseline variables X between types. Navjeevan, Pinto, and Santos (2023) solve

the same problem in a different setting involving the mediation analysis of a choice model containing

seven types. We adapt their solution to our setting. Appendix A.16 provides a detailed description

of the estimation algorithm.

Table 5 presents the causal effects of our model conditioned on different sets of baseline

variables. The first panel of the table presents the estimates for E(Y (2) − Y (1)|S = s12), which

evaluates the casual effect of completing secundaria on migration for the subset of compliers that

change from not completing secundaria to completing it when the incentives of Oportunidades

are available. These compliers account for about 7% of the sample. We find that completing

secundaria has a substantial impact on the decision to migrate. The causal effect is about 0.48 and

the estimates are statistically significant at 10% significance level.

The second panel of the table displays the estimates for E(Y (3) − Y (1)|S = s13), which

is the causal effect of changing education attainment from not completing secundaria to study

beyond secundaria on migration. This effect is associated to 2% of the participants. It comprises

the subset of compliers that decide to study beyond secundaria due to the incentives offered by

Oportunidades. We find the effect to be negative, relatively small, and not statistically significant.

The point estimate of the effect ranges from -0.10 to -0.20 when conditioned on baseline variables.

The main feature of this empirical exercise is the use of incentive analysis to assess the question

of whether schooling has a non-monotonic effect on the decision to migrate to the US. We focus
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on the age range most likely to respond to the schooling incentives offered by Oportunidades. Our

stylized model enables us to characterize five types that are driven by economic behavior. We

are able to evaluate the share of the participants that do respond to Oprtunidades’ incentives

and evaluate the causal effects of schooling on migration for those who respond to the incentives.

We find compelling evidence that completing secundaria increases the likelihood of migration.

Our key empirical finding however is the difference between the causal effects. While completing

secundaria has a strong effect on the propensity to migrate, studying beyond secundaria does not.

These findings corroborate the hypothesis of several works suggesting a negative and non-monotonic

selection of migrants regarding education (Behrman et al., 2005; Borjas, 1987; Chiquiar and Hanson,

2005).

Table 5: Causal Effects for Males

Causal Effects Model 1 Model 2 Model 3 Model 4

E(Y (2)− Y (1)|S = s21) 0.480 0.487 0.472 0.503
s.e. 0.265 0.261 0.261 0.287

p-val 0.070 0.062 0.071 0.079

E(Y (3)− Y (1)|S = s31) -0.001 -0.118 -0.135 -0.194
s.e. 0.274 0.320 0.310 0.358

p-val 0.998 0.713 0.662 0.587

This table presents the estimates of the causal effects for males. The estimates are obtained according to the doubly robust
orthogonal score estimator described in this section. The estimates comprise four models that differ in terms of the set of
baseline variables we seek to control for. Model 1 does not include baseline variables. Model 2 employs age at onset and
county migration index. Model 3 adds family characteristics: family members speak indigenous language, number of household
members, and number of teenagers. Model 4 includes household assets and house ownership. Estimates consists on the effect,
its standard error and the two-sided p-value associated with inference that tests if the effect is equal to zero. Standard errors
are computed using the multiplier bootstrap method.

6 Summary and Conclusions

This paper offers a fresh perspective on the identification of causal effects in economic choice models

that employ instrumental variables.

We diverge from traditional approaches focusing on identification strategies grounded in novel

monotonicity or separability conditions. Instead, we introduce a framework that utilizes revealed

preference analysis to translate choice incentives into identification conditions. This method pos-

sesses several advantages, notably that identification does not depend on invoking statistical or

functional form assumptions. Instead, identification conditions emerge naturally from fundamen-

tal economic principles applied to choice incentives. This enhances both the credibility of the

underlying assumptions and the clarity of the sources of identification.

The framework is versatile enough to accommodate a wide range of non-trivial identification

assumptions, making it applicable in scenarios where traditional IV assumptions may not hold.
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We have demonstrated its flexibility by examining well-established examples of choice incentives in

the policy evaluation literature, showcasing its adaptability to real-world empirical research. We

then examine how popular identification assumption, commonly invoked in the literature of policy

evaluation, can be traced back to specific patters of choice incentives. We provide several results

that map broad patterns of choice incentives into useful identification

We employ our analytical framework to investigate the migration patterns of impoverished

Mexican households to the US. A substantial literature on migration investigates the relationship

between education attainment and the likelihood of migration. Seminal work of Borjas (1987, 1994)

suggests a negative selection in which those with lowest education benefit the most from moving

to the US. On the other hand, Behrman et al. (2005); Chiquiar and Hanson (2005); Hanson (2006)

posits a non-monotonic relationship between education and migration, where the fundamental skills

such as basic English proficiency taught in secundaria (middle school) increase the propensity to

migrate while additional education reduces migration.

We utilize data from Oportunidades, the largest and most significant anti-poverty program in

Mexico, to examine whether schooling has a non-monotonic impact on the decision to migrate to

the United States. Employing our incentive framework, we identify two causal effects of education

on migration for students responding to the schooling incentives provided by Oportunidades.

Specifically, we assess the impact of completing secundaria and the effects of pursuing ed-

ucation beyond this level. Our findings provide compelling evidence that completing secundaria

increases the likelihood of migration, whereas advancing schooling beyond middle school has a neg-

ative effect on migration. We estimate our model using novel machine learning techniques that

assure double robustness of our estimates.

In the broader context of economic research, this paper contributes to the growing body of

literature that leverages revealed preference analysis to enhance the identification of causal effects in

IV models. Our approach offers a valuable tool for economists grappling with identification issues in

diverse and non-standard empirical settings. We make the case that combining economic incentives

and classical behavior strengthen the foundations of IV analysis and empowers researchers with a

useful tool to evaluate such models.
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A Model Properties and Identification Analyses

A.1 Proof of Theorem T.1

We use the following auxiliary lemma to prove the result:

Lemma L.1. Let a linear system y = Bx, where B is a real-valued matrix with full row-rank

and ξ be a vector with the same dimension of x. Thus, ξ′x is point identified if and only if

ξ′ξ = ξ′B′(BB′)−1Bξ.

Proof. The general solution for x in the system of linear equations represented by y = Bx is:27

y = Bx ⇒ x = B+y + (I −B+B)λ (54)

where λ is an arbitrary real-valued |x|-dimension vector, I is an identity matrix of the same

dimension and B+ is the Moore–Penrose Pseudoinverse of matrix B.28 It follows that a linear

combination ξ′x is point identified if and only if ξ′(I − B+B) = 0. Note that B+B denotes an

orthogonal projection since (B+B)′ = B+B and (B+B)·(B+B) = B+B holds. Thus, it is also the

case that I−B+B is an orthogonal projection and therefore (I−B+B)(I−(B+B))′ = I ′−(B+B).

Combining these properties, we have that:

ξ′(I −B+B) = 0 ⇔ ξ′(I −B+B)(ξ′(I −B+B))′ = 0 ⇔ ξ′(I −B+B)ξ = 0. ⇔ ξ′ξ = ξ′B+Bξ.

Note that if matrix B has full row rank, the pseudo-inverse matrix is given by B+ = B′(BB′)−1.29

We can combine these properties to state that ξ′x is point identified if and only if ξ′ξ = ξ′B′(BB′)−1Bξ.

Equation (6) establishes the following systems of linear equations:

QZ(t)⊙ PZ(t) = Bt

(
QS(t)⊙ PS

)
and PZ(t) = BtPS for all t ∈ T .

We seek to examine the identification of E(Y (t)|S ∈ S̃) for some response type set S̃ ⊂ S. Let
b(S̃) be the NS × 1 vector that indicates the types that belongs to set S̃, namely:

b(S̃) =
[
1[s1 ∈ S̃], ...,1[sNS

∈ S̃]
]′
.

Thus we can express E(Y (t)|S ∈ S̃) as:

E(Y (t)|S ∈ S̃) =
b(S̃)′

(
QS(t)⊙ PS

)
b(S̃)′PS

. (55)

According to Lemma L.1, the criteria for the identification of both the numerator and the de-

nominator of the ratio in (55) is given by b(S̃)′b(S̃) = b(S̃)′B′
t(BtB

′
t)
−1Btb(S̃). Note that b(S̃) is

an indicator vector. Thus, b(S̃)′b(S̃) is simply the cardinality of S̃, that is, b(S̃)′b(S̃) = |S̃|.
The term Btb(S̃) is the sum of the columns of Bt corresponding to the types in S̃, that is,

27See Magnus and Neudecker (1999) for a general discussion of linear systems.
28The Moore–Penrose Pseudoinverse B+ of matrix B is unique and defined by the following properties: (1)

BB+B = B; (2) B+BB+ = B+; (3) B+B = (B+B)′; and (4) BB+ = (BB+)′.
29See Magnus and Neudecker (1999).
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Btb(S̃) =
∑

s∈S̃ Bt[·, s]. Combining these results, we have the criteria:

b(S̃)′b(S̃) = b(S̃)′B′
t(BtB

′
t)

−1Btb(S̃) ⇔

(∑
s∈S̃ Bt[·, s]

)′ (
BtB

′
t

)−1
(∑

s∈S̃ Bt[·, s]
)

|S̃|
= 1.

This result proves the first part of the theorem. The second part of the theorem employs the

general solution of linear systems in (54). If the identification criteria holds, then P (S ∈ S̃) can be

expressed as:

P (S ∈ S̃) = b(S̃)′B+
t PZ(t) = b(S̃)′Bt

(
BtB

′
t

)−1
PZ(t) =

(∑
s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1
PZ(t).

In the same token, the identification of E(Y (t)|S ∈ S̃)P (S ∈ S̃) is given that:

E(Y (t)|S ∈ S̃)P (S ∈ S̃) = b(S̃)′B+
t

(
QZ(t)⊙ PZ(t)

)
= b(S̃)′B′

t

(
BtB

′
t

)−1 (
QZ(t)⊙ PZ(t)

)
=
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1 (
QZ(t)⊙ PZ(t)

)
.

A.2 Applying Theorem T.1 to LATE

Consider the LATE model where T ∈ {t0, t1}, Z ∈ {z0, z1}, and the monotonicity condition

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1]∀i holds. This model admits three types: never-takers snt = [t0, t0]
′,

compliers sc = [t0, t1]
′, and always-takers sat = [t1, t1]

′. The corresponding response matrix R and

the binary matrices Bt0 ≡ 1[R = t0], Bt1 ≡ 1[R = t1] are:

R =

snt sc sat[ ]
t0 t0 t1 T (z0)

t0 t1 t1 T (z1)
∴ Bt0 =

snt sc sat[ ]
1 1 0 Ti(z0)

1 0 0 Ti(z1)
, Bt1 =

snt sc sat[ ]
0 0 1

0 1 1
.

(56)

It is useful to define the identification criteria H[t, s] ≡ Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s]. According to

Theorem T.1, E(Y (t)|S = s) is identified if H[t, s] = 1. The following equation computes the

identification criteria H[t1, sc] for the treated compliers E(Y (t1)|S = sc) of the LATE model:

H[t1, sc] = Bt1 [·, sc]′
(
Bt1B

′
t1

)−1
Bt1 [·, sc] = [ ]0 1

[0 0 1
0 1 1

]0 0
0 1
1 1




−1 [ ]
0
1

= 1,

H[t1, sc] = 1 means that E(Y (t1)|S = sc) is identified, and, according to Theorem T.1, the
identification equation for E(Y (t1)|S = sc) is given by:
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E(Y (t1)|S = sc) =

[
Bt1 [·, sc]′

(
Bt1B

′
t1

)−1
]
·

(
QZ(t1)⊙ PZ(t1)

)
[
Bt1 [·, sc]′

(
Bt1B

′
t1

)−1
]
·

(
PZ(t1)

) (57)

=

[
−1 1

]
·

E(Y |T = t1, Z = z0)P (T = t1|Z = z0)
E(Y |T = t1, Z = z1)P (T = t1|Z = z1)


[
−1 1

]P (T = t1|Z = z0)
P (T = t1|Z = z1)


(58)

=
E(Y ·Dt1 |Z = z1)− E(Y ·Dt1 |Z = z0)

E(Dt1 |Z = z1)− E(Dt1 |Z = z0),
, (59)

where Dt1 ≡ 1[T = t1]. The parameter can be estimated by a 2SLS regression that uses Z to

instrument the effect of the endogenous choice indicator Dt1 on the outcome variable Y ·Dt1 . The

the following Identification Matrix displays the value of the identification criteria H[t, s] for all

(t, s) ∈ {t0, t1} × {sn, sc, s1} of the LATE model:

LATE Identification Matrix H =

snt sc sat[ ]
1 1 0 t0

0 1 1 t1
(60)

The matrix indicates that the identification status of six counterfactual outcomes. Four counterfac-

tual outcomes are identified: E(Y (t0)|S = sc) and E(Y (t1)|S = sc) for compliers, E(Y (t0)|S = snt)

for never-takes, and E(Y (t1)|S = sa) for always-taker. Neither E(Y (t1)|S = snt) or E(Y (t0)|S =

sat) are identified, indeed, they are not even defined. The expression that identifies the counter-

factual outcome for treated compliers, E(Y (t1)|S = sc) is presented in equations (57)–(59). The

remaining expressions according to Theorem T.1 are displayed below:

E(Y (t0)|S = snt) =
Bt0 [·, snt]′

(
Bt0B

′
t0

)−1 · (QZ(t0)⊙ PZ(t0))

Bt0 [·, snt]′
(
Bt0B

′
t0

)−1 · PZ(t0)
=
E(Y ·Dt0 |Z = z1)

E(Dt0 |Z = z1),
,

E(Y (t1)|S = sat) =
Bt1 [·, sat]′

(
Bt1B

′
t1

)−1 · (QZ(t1)⊙ PZ(t1))

Bt1 [·, sat]′
(
Bt1B

′
t1

)−1 · PZ(t1)
=
E(Y ·Dt1 |Z = z0)

E(Dt1 |Z = z0),
,

E(Y (t0)|S = sc) =
Bt0 [·, sc]′

(
Bt0B

′
t0

)−1 · (QZ(t0)⊙ PZ(t0))

Bt0 [·, sc]′
(
Bt0B

′
t0

)−1 · PZ(t0)
=
E(Y ·Dt0 |Z = z0)− E(Y ·Dt0 |Z = z1)

E(Dt0 |Z = z0)− E(Dt0 |Z = z1),
.

We can combine the identification equations for the treated and untreated compliers to obtain

the well-known LATE expression:

E(Y (t1)− Y (t0)) =
E(Y |Z = z1)− E(Y |Z = z0)

P (T = t1|Z = z1)− P (T = t0|Z = z1)
.

Now consider the LATE model in which we relax the monotonicity condition. In this case,

4



the response matrix and the corresponding identification matrix are:

R =

snt sc sat sd[ ]
t0 t0 t1 t1 Ti(z0)

t0 t1 t1 t0 Ti(z1)
⇒ H =

snt sc sat sd[ ]
2/3 2/3 0 2/3 t0

0 2/3 2/3 2/3 t1

Note that none of the elements of the identification matrix are equal to one, which indicates that

there are no point-identified counterfactuals when the monotonicity condition is relaxed.

A.3 Using Revealed Preference Analysis to Generate Choice Restrictions

Our choice model stems from a classical economic framework where the potential choice of agent i

for a fixed IV-value z is characterized by the following utility maximization problem:

Choice Equation : Ti(z) = argmaxt∈T

(
max

g∈Bi(Zi,t)
ui(t, g)

)
. (61)

The real-valued utility function ui : T × RK
+ represents the rational preferences of agent i towards

the bundle (t, g) where t is the treatment status and g is a K-dimensional vector of unobserved con-

sumption goods. The set Bi(z, t) ⊂ RK
+ stands for the potential budget set of consumption goods g

of agent i when the treatment is fixed to t ∈ T and the instrument is fixed to the value z ∈ Z. The
budget set is broadly interpreted to encompass various decisions extending beyond traditional con-

sumption goods. It can include decisions regarding education attainment, neighborhood selection,

and time allocation depending on the empirical setting under examination.

The incentive matrix L characterises budget set relationships in which bigger incentives cor-

respond to larger budget sets for a given a choice t :

Budget Relationships: L[z, t] ≤ L[z′, t] ⇒ Bi(z, t) ⊆ Bi(z
′, t). (62)

To put in context, consider the LATE model where T = t1 denotes college enrollment and T = t0

denotes no college. Z ∈ is a randomly assigned tuition discount, z1 if the discount is granted and

z0 if not. The LATE incentive matrix yields the following budget set relations:

L =

t0 t1[ ]
0 0
0 1

z0
z1︸ ︷︷ ︸

LATE Incentive Matrix

⇒ Bi(z0, t0) = Bi(z1, t0)
Bi(z0, t1) ⊂ Bi(z1, t1)︸ ︷︷ ︸

Implied Budget Set Relationships

(63)

The budget set equality Bi(z0, t0) = Bi(z1, t0) implies that when the choice is set to no college

t0, the tuition discount is irrelevant. Conversely, Bi(z0, t1) ⊂ Bi(z1, t1) suggests that the tuition

discount increases agent i’s budget if they choose to attend college.

Budget relationships enable us to use the Weak Axiom of Revealed Preference (WARP) of

Richter (1971). Bundles (t, g) and (t′, g′) are said to be available given z if g ∈ Bi(z, t) and

g′ ∈ Bi(z, t
′). If bundle (t, g) is chosen by agent i when (t, g) and (t′, g′) are available, then (t, g) is

5



said to be directly and strictly revealed preferred to (t′, g′), that is, (t, g) ≻d
i,z (t

′, g′). WARP states

that if (t, g) revealed preferred to (t′, g′) under z ∈ Z, then (t′, g′) cannot be revealed preferred to

(t, g) under z′ ∈ Z \ {z}. Notationally, we write that:

WARP: (t, g) ≻d
i,z (t

′, g′) ⇒ (t′, g′) \≻d
i,z′ (t, g). (64)

The following lemma uses WARP and the budget relations (62) to translate incentives into choice

restrictions.

Lemma L.2. Let a choice model with an incentive matrix L. Under the budget relationships (62)

and WARP (64), the following choice rule holds:

WARP Rule: If Ti(z) = t, and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (65)

Proof. Ti(z) = t implies that there exists g ∈ Bi(z, t) such that (t, g) ≻d
i,z (t

′, g′) for all g′ ∈ Bi(z, t
′).

The inequality 0 ≤ L[z′, t] − L[z, t] implies that the budget set associated with t increases as we

move from z to z′, Bi(z, t) ⊆ Bi(z
′, t). Thus the bundle (t, g) remains available under z′. On the

other hand, L[z′, t′] − L[z, t′] ≤ 0 implies that the budget set associated with t′ decreases as

we move from z to z′, Bi(z
′, t′) ⊆ Bi(z, t

′). Thus any bundle (t′, g′′) that is available under z′,

(t′, g′′); g′′ ∈ Bi(z
′, t′) were also available under z. Thus, according to WARP, agent i still prefers

(t, g) to any (t′, g′′); g′′ ∈ Bi(z
′, t′), that is, (t′, g′′) \≻d

i,z′ (t, g). This implies that agent i does not

choose t′ under z′, Ti(z
′) ̸= t′.

As mentioned in the main paper, applying the WARP Rule 65 to LATE incentives (63) yields

the choice restriction Ti(z0) = t1 ⇒ Ti(z1) ̸= t0, which means that if the student chooses college

under no incentives, it will not choose otherwise when incentives to enroll in college are offered.

It is possible to exploit additional economic choice behaviors that enable us to enhance the

WARP rule. For instance, consider the choice of a college student who debates between two

majors: electrical or mechanical engineering. Suppose the student chooses electrical over mechanical

engineering under no tuition discount. In that case, it is natural to assume that the student will

maintain choice when granted a tuition discount that applies to both majors. This behavior is

captured by the condition called Normal Choice:

Normal Choice: t ≻i,z t
′ and L[z′, t′]−L[z, t′] = L[z′, t]−L[z, t] then t ≻i,z′ t′ holds, (66)

where t ≻i,z t
′ means that there is g ∈ Bi(z, t) such that (t, g) ≻i,z (t′, g′) for all g′ ∈ Bi(z, t

′).

Normal Choice states that if an agent i prefers t instead of t′ under z, and if the change in incentives

for choosing either t or t′ is the same under z′, then agent i maintains its preference of t over t′

under z′.30 WARP and Normal Choice (66) yield the following choice rule:

30Normal Choice is a no-crossing condition on the ranking of choice preferences that maintains the relative rank
of two choices that share the same incentives. The normal choice is related to the notion of normal goods. Consider
an agent that debates between two goods a and b. Suppose a discount of d dollars is applied to both goods. This
discount can be understood as an increase in income of d dollars since the agent will benefit from it regardless of his
choice. An increase in income does not decrease the consumption of a normal good. If the agent decides to buy a
under no discount, it will continue to consume one unit of good a when the discount is available.
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Lemma L.3. Let a choice model with an incentive matrix L. Under the budget relationships (62),

WARP (64), and Normal Choice (66), the following choice rule holds:

Choice Rule: If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (67)

Proof. Let δt ≡ L[z′, t] − L[z, t] and δt′ ≡ L[z′, t′] − L[z, t′], where δt′ ≤ δt. Note that we can

set L[z, t] = L[z, t′] = 0, L[z′, t] = δt, and L[z′, t′] = δt′ without loss of generality. Note also

that Ti(z) = t means that t ≻i,z t
′. Now consider an auxiliary instrument z∗ that sets L[z∗, t] =

L[z∗, t′] = δt′ .We first examine the change from z to z∗. In this case, we have that L[z∗, t′]−L[z, t′] =

L[z∗, t]−L[z, t] = δt′ . According to Normal Choice (66), we have that t ≻i,z∗ t
′. Now consider the

change from z∗ to z′. The inequality δt′ ≤ δt implies that: L[z′, t′]−L[z∗, t′] = 0 ≤ L[z′, t]−L[z∗, t].

By WARP Rule (65), we have that t ≻i,z′ t
′ and therefore Ti(z

′) ̸= t′.

As mentioned, the Choice Rule highlights a cornerstone principle of rational choice theory,

which posits that an individual’s preferences will remain consistent unless there is a compelling

incentive to choose otherwise. Specifically, if an agent chooses t over t′ when presented with z-

incentives, and if z′-incentives are at least as persuasive for choice t as they are for t′, then the

agent will not choose t′ over t.

A.4 Additional Analyses of the IV Model in Example E.3

The incentive matrix of Example E.3 is:

L =

t0 t1 t2[ ]0 0 0
0 1 0
0 0 1

z0
z1
z2

(68)

The incentive matrix (68) justifies two monotonicity conditions:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1] (69)

1[Ti(z0) = t2] ≤ 1[Ti(z2) = t2]. (70)

These monotonicity conditions eliminate 12 out of the 27 possible response types as described in

Panel B of Table A.1.

The remaining 15 response types are displayed in response matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 t0 t0 t0 t0 t0 t0 t0 t0 t0 t2 t1 t1 t2 t2 t2

t0 t0 t0 t1 t1 t1 t2 t2 t2 t2 t1 t1 t0 t1 t2

t0 t1 t2 t0 t1 t2 t0 t1 t2 t0 t1 t2 t2 t2 t2

Ti(z0)

Ti(z1)

Ti(z2)

(71)

The response matrix is then used as input to generate the identification matrix H, which is a

N×NT -dimensional matrix whose elements are given by H[t, s] ≡ Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s].
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H =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 11/27 8/27 8/27 8/27 5/27 5/27 8/27 5/27 5/27 1/3 0 0 1/3 0 0

0 4/13 0 7/26 11/26 7/26 0 4/13 0 0 15/26 15/26 0 7/26 0

0 0 16/75 0 0 16/75 19/75 19/75 31/75 34/75 0 16/75 1/3 1/3 8/25

t0

t1

t2

Note that none of the entries of the identification matric is equal to one. According to T.1,

this means that not a single counterfactual outcome of the type E(Y (t)|Ss); (t, s) ∈ {t0, t1, t2} ×
{s1, ..., s15} is identified. We conclude that the elimination of response type due to the monotonicity

conditions (69)–(70) is not sufficient to point-identify counterfactual outcome.

Revealed preference analysis is more effective in eliminating types than the monotonicity con-

ditions. Table A.2 applies choice rule (9) to the incentive matrix (68). There are 22 binding

restrictions. Table A.3 summarise these 22 choice restrictions of Table A.2 into the five restric-

tions,31 and Panel C of Table (A.1) shows that these five restrictions eliminate 19 out of the 27

possible response types.

Table A.2: Choice Restrictions of Example E.3 Due to Revealed Preference Analysis

Revealed Incentive Choice

# Choice Inequalities Statement

Tı(z) = t L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] T (z′) ̸= t′

1 Tı(z0) = t0, L[z2, t1]−L[z0, t1] = 0 ≤ 0 = L[z2, t0]−L[z0, t0] Tı(z2) ̸= t1
2 Tı(z0) = t0, L[z1, t2]−L[z0, t2] = 0 ≤ 0 = L[z1, t0]−L[z0, t0] Tı(z1) ̸= t2

3 Tı(z0) = t1, L[z1, t0]−L[z0, t0] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] Tı(z1) ̸= t0
4 Tı(z0) = t1, L[z2, t0]−L[z0, t0] = 0 ≤ 0 = L[z2, t1]−L[z0, t1] Tı(z2) ̸= t0
5 Tı(z0) = t1, L[z1, t2]−L[z0, t2] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] Tı(z1) ̸= t2

6 Tı(z0) = t2, L[z1, t0]−L[z0, t0] = 0 ≤ 0 = L[z1, t2]−L[z0, t2] Tı(z1) ̸= t0
7 Tı(z0) = t2, L[z2, t0]−L[z0, t0] = 0 ≤ 1 = L[z2, t2]−L[z0, t2] Tı(z2) ̸= t0
8 Tı(z0) = t2, L[z2, t1]−L[z0, t1] = 0 ≤ 1 = L[z2, t2]−L[z0, t2] Tı(z2) ̸= t1

9 Tı(z1) = t0, L[z0, t1]−L[z1, t1] = −1 ≤ 0 = L[z0, t0]−L[z1, t0] Tı(z0) ̸= t1
10 Tı(z1) = t0, L[z2, t1]−L[z1, t1] = −1 ≤ 0 = L[z2, t0]−L[z1, t0] Tı(z2) ̸= t1
11 Tı(z1) = t0, L[z0, t2]−L[z1, t2] = 0 ≤ 0 = L[z0, t0]−L[z1, t0] Tı(z0) ̸= t2

12 Tı(z1) = t2, L[z0, t0]−L[z1, t0] = 0 ≤ 0 = L[z0, t2]−L[z1, t2] Tı(z0) ̸= t0
13 Tı(z1) = t2, L[z2, t0]−L[z1, t0] = 0 ≤ 1 = L[z2, t2]−L[z1, t2] Tı(z2) ̸= t0
14 Tı(z1) = t2, L[z0, t1]−L[z1, t1] = −1 ≤ 0 = L[z0, t2]−L[z1, t2] Tı(z0) ̸= t1
15 Tı(z1) = t2, L[z2, t1]−L[z1, t1] = −1 ≤ 1 = L[z2, t2]−L[z1, t2] Tı(z2) ̸= t1

16 Tı(z2) = t0, L[z0, t1]−L[z2, t1] = 0 ≤ 0 = L[z0, t0]−L[z2, t0] Tı(z0) ̸= t1
17 Tı(z2) = t0, L[z0, t2]−L[z2, t2] = −1 ≤ 0 = L[z0, t0]−L[z2, t0] Tı(z0) ̸= t2
18 Tı(z2) = t0, L[z1, t2]−L[z2, t2] = −1 ≤ 0 ≤ 0 = L[z1, t0]−L[z2, t0] Tı(z1) ̸= t2

19 Tı(z2) = t1, L[z0, t0]−L[z2, t0] = 0 ≤ 0 = L[z0, t1]−L[z2, t1] Tı(z0) ̸= t0
20 Tı(z2) = t1, L[z1, t0]−L[z2, t0] = 0 ≤ 1 = L[z1, t1]−L[z2, t1] Tı(z1) ̸= t0
21 Tı(z2) = t1, L[z0, t2]−L[z2, t2] = −1 ≤ 0 = L[z0, t1]−L[z2, t1] Tı(z0) ̸= t2
22 Tı(z2) = t1, L[z1, t2]−L[z2, t2] = −1 ≤ 1 = L[z1, t1]−L[z2, t1] Tı(z1) ̸= t2

This table displays the binding choice restrictions generated by choice rule (9) to the incentive matrix of Example

E.3.

31The remaining restrictions do not eliminate any additional response types that is not already covered by these
five restrictions.
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Table A.3: Summary of Choice Restrictions generated by applying Choice Rule (9) to Example
E.3

# Choice Restrictions

1,2 Tı(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
3,4,5 Tı(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
6,7,8 Tı(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2

12,13,14,15 Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
19,20,21,22 Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1

The eight response types that survive the elimination process are displayed in the response

matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 t0 t0 t0 t0 t1 t1 t2 t2 Ti(z0)

t0 t0 t1 t1 t1 t1 t1 t2 Ti(z1)

t0 t2 t0 t2 t1 t2 t2 t2 Ti(z2)

The corresponding identification matrix is given by:

H =

s1 s2 s3 s4 s5 s6 s7 s8 3/4 3/4 3/4 3/4 0 0 0 0 t0

0 0 1/3 1/3 1 1 1/3 0 t1

0 1/3 0 1/3 0 1/3 1 1 t2

The entries of the identification matrix show that four counterfactual outcomes are point-identified,

namely, E(Y (t1)|S = s5), E(Y (t1)|S = s6), E(Y (t2)|S = s7), and E(Y (t2)|S = s8).

A.5 Analysing Choice Restrictions of the IV Model in Example E.5

Let T ∈ {0, 2, 4} represent the number of years of the college degree and let the instrument

be Z = (Z2, Z4) ∈ {0, 1}2, where Z2 and Z4 indicate the proximity to two-year and four-year

colleges, respectively. We use T (z2, z4) for the counterfactual choice. The response vector is

S = [T (0, 0), T (0, 1), T (1, 0), T (1, 1)]′, which can take 81 potential response types. The incentive

matrix of this choice model is:

L =

0 2 4 (z2, z4)


0 0 0 (0, 0)
0 0 1 (0, 1)
0 1 0 (1, 0)
0 1 1 (1, 1)

We seek to investigate the choice restrictions generated by choice rule (9). The rule states
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that:

Choice Rule: If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′.

The rule applies to all combinations of (t, t′) of treatments in {0, 2, 4} and all the combination of

IV-values (z, z′) in {0, 1}2. There are three treatments, which yield six combinations of treatments.

There are four IV-values, which yield 12 combinations of IV-value. Thus, we must apply the rule

6× 12 = 72 times.

Some of these applications generate incentive relationships that adhere to the rule criteria. For

instance, consider the comparison between the IV-values z = (0, 0) (first row of L) and z′ = (0, 1)

(second role of L). If we set t = 0 against t′ = 2 we have the following incentive condition:

L[(0, 1), 2]−L[(0, 1), 2] = 1 ⩽̸ 0 = L[(0, 1), 0]−L[(0, 0), 0]

Thus, Ti(0, 0) = 0 does not imply that Ti(0, 1) ̸= 2. On the other hand, if we set t = 4 against

t′ = 2 we have that:

L[(0, 1), 2]−L[(0, 1), 2] = 1 ≤ 1 = L[(0, 1), 4]−L[(0, 0), 4]

Thus the choice restriction Ti(0, 0) = 4 ⇒ Ti(0, 1) ̸= 2 holds. The following table indicates all the

binding incentive conditions across each of the possible combinations among t, t′ ∈ {0, 2, 4} and

z, z′in{0, 1}2 :

Table A.4: Binding Incentives in Example E.5

t 0 0 2 2 4 4
t′ 2 4 0 4 0 2

z z′ 1 2 3 4 5 6

1 (0, 0) (0, 1) ✓ ✗ ✓ ✗ ✓ ✓
2 (0, 0) (1, 0) ✗ ✓ ✓ ✓ ✓ ✗
3 (0, 0) (1, 1) ✗ ✗ ✓ ✓ ✓ ✓

4 (0, 1) (0, 0) ✓ ✓ ✓ ✓ ✗ ✗
5 (0, 1) (1, 0) ✗ ✓ ✓ ✓ ✗ ✗
6 (0, 1) (1, 1) ✗ ✓ ✓ ✓ ✓ ✗

7 (1, 0) (0, 0) ✓ ✓ ✗ ✗ ✓ ✓
8 (1, 0) (0, 1) ✓ ✗ ✗ ✗ ✓ ✓
9 (1, 0) (1, 1) ✓ ✗ ✓ ✗ ✓ ✓

10 (1, 1) (0, 0) ✓ ✓ ✗ ✓ ✗ ✓
11 (1, 1) (0, 1) ✓ ✓ ✗ ✗ ✓ ✓
12 (1, 1) (1, 0) ✓ ✓ ✓ ✓ ✗ ✗

This table indicates weather the incentive condition L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] for all combinations of t, t′ ∈ {0, 2, 4}
and all z, z′ ∈ {0, 1}2. Incentive conditions that hold are denoted by ✓. Those which do not hold are denoted by ✗.

The content of the table is divided into twelve blocks separated by horizontal and vertical
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lines. The case Ti(0, 0) = 0 is examined in the first block (rows 1–3, columns 1–2). This block

contains two binding incentive conditions, which yield two choice restrictions. The first one is

Ti(0, 0) = 0 ⇒ Ti(0, 1) ̸= 2. Indeed, if agent i chooses 0 under no incentives Ti(0, 0) = 0, the

agent will not choose 2 under (0, 1) since choice 2 is not incentivized. The second restriction is

Ti(0, 0) = 0 ⇒ Ti(1, 0) ̸= 4 and follows a symmetric rationale. The choice restrictions generated by

these twelve blocks are listed in Table A.5.

Table A.5: Choice Restrictions of Example E.5

1 Ti(0, 0) = 0 ⇒ Ti(0, 1) ̸= 2, and Ti(1, 0) ̸= 4
2 Ti(0, 0) = 2 ⇒ Ti(0, 1) ̸= 0, and Ti(1, 0) = Ti(1, 1) = 2
3 Ti(0, 0) = 4 ⇒ Ti(1, 0) ̸= 0, and Ti(0, 1) = Ti(1, 1) = 4

4 Ti(0, 1) = 0 ⇒ Ti(0, 0) = 0, Ti(1, 0) ̸= 4, and Ti(1, 1) ̸= 4,
5 Ti(0, 1) = 2 ⇒ Ti(0, 0) = Ti(1, 0) = Ti(1, 1) = 2
6 Ti(0, 1) = 4 ⇒ Ti(1, 1) ̸= 0

7 Ti(1, 0) = 0 ⇒ Ti(0, 0) = 0, Ti(0, 1) ̸= 2, and Ti(1, 1) ̸= 2,
8 Ti(1, 0) = 2 ⇒ Ti(1, 1) ̸= 0
9 Ti(1, 0) = 4 ⇒ Ti(0, 0) = Ti(1, 0) = Ti(1, 1) = 4

10 Ti(1, 1) = 0 ⇒ Ti(0, 0) = Ti(0, 1) = Ti(1, 1) = 0
11 Ti(1, 1) = 2 ⇒ Ti(1, 0) = 2, and Ti(0, 0) ̸= 4
12 Ti(1, 1) = 4 ⇒ Ti(0, 1) = 4, and Ti(0, 0) ̸= 2

These choice restrictions enable us to eliminate 72 out of the 81 possible response types. The

resulting response matrix is:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


0 0 0 0 0 2 2 4 4 T (0, 0)
0 0 4 4 4 2 4 4 4 T (0, 1)
0 2 0 2 2 2 2 2 4 T (1, 0)
0 2 4 2 4 2 2 4 4 T (1, 1)

It is worth noting that there is considerable overlapping among the choice restrictions. For

instance, we would obtain the same response matrix if we if we were to exclude restrictions 1,3,7,and

8, correspond to the choices Ti(0, 0) = 0, Ti(0, 1) = 0, Ti(1, 0) = 0, and Ti(1, 1) = 0. Indeed, the

response matrix above is also generated by choice restrictions 1,2,3,4,6,7, and 8. This subset of

seven choice restrictions is displayed below:

1 Ti(0, 0) = 0 ⇒ Ti(0, 1) ̸= 2, and Ti(1, 0) ̸= 4
2 Ti(0, 0) = 2 ⇒ Ti(0, 1) ̸= 0, and Ti(1, 0) = Ti(1, 1) = 2
3 Ti(0, 0) = 4 ⇒ Ti(1, 0) ̸= 0, and Ti(0, 1) = Ti(1, 1) = 4

4 Ti(0, 1) = 0 ⇒ Ti(0, 0) = 0, Ti(1, 0) ̸= 4, and Ti(1, 1) ̸= 4,
6 Ti(0, 1) = 4 ⇒ Ti(1, 1) ̸= 0

7 Ti(1, 0) = 0 ⇒ Ti(0, 0) = 0, Ti(0, 1) ̸= 2, and Ti(1, 1) ̸= 2,
8 Ti(1, 0) = 2 ⇒ Ti(1, 1) ̸= 0
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A.6 Causal Interpretation of Angrist and Imbens (1995) Monotonicity

The main paper shows that response matrix above satisfies the monotonicity condition of Angrist

and Imbens (1995). A celebrated result of Angrist and Imbens (1995) is that the monotonicity

condition delivers a causal interpretation to standard 2SLS estimates. The LATE parameter that

compares two IV-values z, z′ evaluates a weighted average of the per-unit treatment effect among

the compliers that change their choice as the instrument shifts from z to z′.

The general formula for the LATE parameter that compares any two IV-values z, z′ where

Ti(z) ≤ Ti(z
′) is:

LATE(z, z′) =
E(Y |Z = z′)− E(Y |Z = z)

E(T |Z = z′)− E(T |Z = z)
=
∑
t<t′

E(Y (t′)− Y (t)|S ∈ St′(z
′) ∩ St(z))ωt,t′ ,

where ωt,t′ =
P (S ∈ St′(z

′) ∩ St(z))∑
t<t′(t

′ − t) · P (S ∈ St′(z′) ∩ St(z))
, and St(z) = {s ∈ S; s[z] = t}.

The set St(z) comprise the response-types that takes value t when the instrument is set to z. Thus

St′(z
′) ∩ St(z) is the set of response types that take value t under z and t′ under z′. The weights

ωt,t′ are positive, but do not necessarily sum to one.

The LATE parameter corresponding to IV-values z0, z1 in the choice model given by response

matrix (23) is:

LATE(z1, z0) ≡
E(Y |Z = z0)− E(Y |Z = z1)

E(T |Z = z0)− E(T |Z = z1)

=
E(Y (t2)− Y (t1)|S ∈ {s4, s6})P (S ∈ {s4, s6}) + E(Y (t3)− Y (t1)|S = s8)P (S = s8)

(t2 − t1) · P (S ∈ {s4, s6}) + (t3 − t1) · P (S = s8)
.

If the treatment were to represent schooling years, then the LATE parameter can be interpreted

as a weighted average of the causal effect of one additional year of education on the response types

(s4, s6, s8), which comprise the agents who alter their schooling choice as the instrument shifts.

A.7 Proof of Theorem T.2

The main statement of the theorem is that, under the choice rule (9), supermodular incentives

imply and is implied by OMC.

OMC states that there exists an ordered sequence of treatment status t1 < · · · < tNT
in T

and a sequence of IV-values z1, . . . , zNZ
in Z such that Ti(z1) ≤ · · · ≤ Ti(zNZ

) holds for each i ∈ I.
It is useful to restate the condition in the following manner:

Lemma L.4. OMC holds if and only if there exists a sequence of treatment status t1, . . . , tNT
in

T and a sequence of IV-values z1, . . . , zNZ
in Z such that for each i ∈ I, we have that:

Ti(zk) = tj ⇒ Ti(zk+1) ∈ {tj , tj+1, ..tNT
} for all k = 1, ..., NZ − 1, and all j = 1, ..., NT − 1.

Proof. If OMC holds, then we have that Ti(zk) ≤ Ti(zk+1) ∀ i ∈ I and all k = 1, ..., NZ − 1. Thus,
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it must be the case that if Ti(zk) = tj then Ti(zk) ≥ tj , that is Ti(zk) ∈ {tj , tj+1, ..., tNT
}. On the

other hand, suppose that Ti(zk) = tj ⇒ Ti(zk+1) ∈ {tj , tj+1, ..tNT
} for all k = 1, ..., NZ − 1. Thus,

consider assigning values to the treatment choices such that t1 < ... < tNT
. This case implies the

choice restriction Ti(zk) = tj ⇒ Ti(zk+1) ≥ tj for all k = 1, ..., NZ − 1. If this constraint applies to

any j ∈ {1, ..., NT }, then we have that Ti(zk) ≤ Ti(zk+1) for all k = 1, ..., NZ − 1, which completes

the proof.

We now prove that supermodular incentives imply OMC given the choice rule (9).

Proof. Consider a sequence of IV-values z1, ..., zNZ
and a sequence of treatment choices t1, ...tNT

for which supermodularity holds. We first examine the choices tj+1 versus tj for an IV-change from

zk to zk+1. Let Ti(zk) = tj+1, under supermodular incentives, we have that L[zk+1, tj ]−L[zk, tj ] ≤
L[zk+1, tj+1] − L[zk, tj+1]. Thus, according to the choice rule (9), Ti(zk) ̸= tj . In summary, we

have that Ti(zk) = tj+1 ⇒ Ti(zk+1) ̸= tj . We can extend this rationale to compare choice tj+1

versus tα for α = 1, ..., j. Note that L[zk+1, tα] − L[zk, tα] ≤ L[zk+1, tj+1] − L[zk, tj+1] for α =

1, ..., j. Thus, we have that Ti(zk) = tj+1 ⇒ Ti(zk+1) ̸= tα for all α ∈ {1, ..., j}. This means that

Ti(zk) = tj+1 ⇒ Ti(zk+1) /∈ {t1, ..., tj} for all j = 1, ..., NT − 1. Otherwise stated, we have that

Ti(zk) = tj+1 ⇒ Ti(zk+1) ∈ {tj+1, ..., tNT
} for all j = 1, ..., NT − 1. According to Lemma L.4, OMC

holds.

Next we show that under the choice rule (9), OMC implies supermodular incentives.

Proof. According to Lemma L.4, if OMC holds, then there must exist a sequence of treatment

status t1, . . . , tNT
in T and a sequence of IV-values z1, . . . , zNZ

in Z such that Ti(zk) = tj ⇒
Ti(zk+1) ∈ {tj , tj+1, ..tNT

} for all k = 1, ..., NZ−1, all j = 1, ..., NT −1, and all i ∈ I. Thus we must

have that Ti(zk) = tj ⇒ Ti(zk+1) ̸= tα for all α ∈ {1, ..., j− 1}. According to the choice rule (9), we

must have that L[zk+1, tj ]−L[zk, tj ] ≥ maxj−1
α=1L[zk+1, tα]−L[zk, tα]. But this property applies to

all j = 2, ..., NT . Thus we must have that L[zk+1, tj ]−L[zk, tj ] ≥ L[zk+1, tj−1]−L[zk, tj−1] for all j =

2, ..., NT . Otherwise stated, we must have that L[zk+1, tj−1]−L[zk, tj−1] ≤ L[zk+1, tj−1]−L[zk, tj−1]

for all j = 2, ..., NT . This property holds for any k ∈ {1, ..., NZ − 1}, which is the definition of

OMC.

A.8 Proof of Theorem T.3

We seek to prove that, if the incentive matrix L is binary, then monotonic incentives imply UMC.

Recall that UMC holds if and only if no 2 × 2 submatrix in R that exhibits the prohibit pattern

which displays a choice t in one of its diagonals while displays no t in the other diagonal. Specifically,

no 2× 2 submatrix in R can take the form:
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s s′[ ]
t t′′ Ti(z)
t′ t Ti(z

′)
, (72)

where t, t′, t′′ ∈ T and z, z′ ∈ Z. It is useful to investigate how the prohibit patter (72) in light

of the choice rule (9). Let L′ be the 2×3 submatrix of the binary incentive matrix L corresponding

to rows z, z′ and columns t, t′, t′′.

Consider the first type in (72) s = [t, t′]′. For s to arise it must be the case that Ti(z) = t ⇏
Ti(z

′) ̸= t′ According to the choice rule (9), this lack of choice restriction can only arise when:32

L[z′, t′]−L[z, t′] > L[z′, t]−L[z, t]. (73)

Given that the incentive matrix is binary, this must the be case that:

1. L[z′, t′] > L[z, t′] and L[z′, t] ≤ L[z, t]; or

2. L[z′, t′] ≥ L[z, t′] and L[z′, t] < L[z, t]

Now consider the second type in (72) s; = [t′′, t]′. For s′ to arise it must be the case that

Ti(z
′) = t⇏ Ti(z) ̸= t′′. This lack of choice restriction can only arise when

L[z, t′′]−L[z′, t′′] > L[z, t]−L[z′, t]. (74)

Given that the incentive matrix is binary, this must the be case that:

1. L[z, t′′] > L[z′, t′′] and L[z, t] ≤ L[z′, t]; or

2. L[z, t′′] = L[z′, t′′] and L[z, t] < L[z′, t]

It is clear that the only possibility to generate the prohibit parte in by combining the first item of

the two lists, namely,

L[z′, t′] > L[z, t′], L[z, t′′] > L[z′, t′′], and L[z, t] = L[z′, t].

In other words, the prohibit pattern requires the following pattern of incentives:

1. Incentives for t must be equal L[z, t] = L[z′, t]

2. Incentives for t′ must increase as Z changes from z to z′ : L[z, t′] < L[z′, t′].

3. Incentives for t′′ must decrease as Z changes from z to z′ : L[z, t′′] > L[z′, t′′].

The pattern of incentives for t and t′ violate the monotonic incentive condition, which proves the

theorem.

32Alternatively, one can state that the type only arises when Ti(z
′) = t′ ⇏ Ti(z) ̸= t. According to the choice

rule (9), this lack of choice restriction can only arise when L[z, t]−L[z′, t] > L[z, t′]−L[z′, t′]. It turns out that the
incentive relationship above is equivalent to the incentive relationship in (74).

15



A.9 Proof of Theorem T.4

We first seek to prove that t-monotonic incentives (33) implies the monotonicity condition (32). To

do so, it suffices to prove that t-monotonic incentives prevents the advent of the prohibit pattern

in the response matrix R. Specifically, no 2× 2 submatrix in R can take the form:

s s′[ ]
t t′′ Ti(z)
t′ t Ti(z

′)
, (75)

where t, t′, t′′ ∈ T and z, z′ ∈ Z. Consider the IV-values z, z′ ∈ Z. If t-monotonic incentives

hold, there are two cases to consider.

The first case consists the instance where

L[z′, t]−L[z, t] ≤ L[z′, t′]−L[z, t′] ∀ t′ ∈ T \ {t}
holds. According to the choice rule (9), it must be the case that Ti(z) = t⇒ Ti(z

′) ̸= t′∀t′ ∈ T \{t},
which is equivalent to state that Ti(z) = t⇒ Ti(z

′) = t which prevents the prohibit pattern.

The second case is where the following condition holds:

L[z′, t]−L[z, t] ≥ L[z′, t′]−L[z, t′] ∀ t′ ∈ T \ {t}
This condition can be equivalently stated as:

L[z, t]−L[z′, t] ≤ L[z, t′]−L[z′, t′] ∀ t′ ∈ T \ {t}.
Applying the same rationale of the first case, we have that Ti(z

′) = t ⇒ Ti(z) = t which also

prevents the prohibit pattern.

Next we seek to prove that if the monotonicity condition (32) holds, than t-monotonic incen-

tives (33) must be satisfied. For the monotonicity condition (32) to hold, the prohibit pattern (75)

cannot occur. The prohibit pattern requires two conditions to occur:

1. Ti(z) = t must not imply Ti(z
′) = t′ for some t′ ∈ T \ {t}; and

2. Ti(z
′) = t must not imply Ti(z) = t′′ for some t′′ ∈ T \ {t}.

According to the choice rule (9), these two conditions require the following incentive relationships:

1. L[z′, t]−L[z, t] < L[z′, t′]−L[z, t′] for some t′ ∈ T \ {t}, and

2. L[z, t]−L[z′, t] < L[z, t′′]−L[z′, t′′] for some t′′ ∈ T \ {t}.

These conditions imply that the prohibit patters requires the following incentive scheme:

L[z′, t′′]−L[z, t′′] < L[z′, t]−L[z, t] < L[z′, t′]−L[z, t′] for some t′, t′′ ∈ T \ {t}.
Otherwise stated, the prohibit pattern requires that the incentive difference for choice t be strictly

larger than the minimum difference among the choices and strictly smaller than the maximum

difference among the treatment choices. Consequently if the prohibit pattern does not occur, then

it must be the case that:

L[z′, t]−L[z, t] = max
t′∈T

L[z′, t′]−L[z, t′] or L[z′, t]−L[z, t] = min
t′∈T

L[z′, t′]−L[z, t′].

This condition is equivalent to t-monotonic incentives (33).

16



A.10 Examples of Incentive IV Models where UMC Holds

Equations (76)–(77) display the incentive matrices in (35)–(36) and the corresponding response

matrices generated by the applying the Choice Rule (9) to each of the incentive matrices.

L =

t1 t2 t3[ ]0 0 0 z1
1 0 0 z2
0 1 1 z3

, R =

s2 s1 s3 s4 s5 s6 s7[ ]t1 t1 t1 t2 t2 t3 t3 T (z1)
t1 t1 t1 t1 t2 t1 t3 T (z2)
t1 t2 t3 t2 t2 t3 t3 T (z3)

(76)

L =

t1 t2 t3[ ]
0 0 1 z1
0 1 2 z2
1 2 3 z3

, R =

s2 s1 s3 s4 s5[ ]
t1 t1 t1 t2 t3 T (z1)
t1 t2 t3 t2 t3 T (z2)
t1 t2 t3 t2 t3 T (z3)

(77)

The two response matrices above adhere to the UMC since there are no 2× 2 submatrix that

contains a choice t ∈ {t1, t2, t3} in the diagonal, but does not contain the same choice t in its

off-diagonal.

A.11 Proof of Theorem C.3

We seek to show that for any binary incentive matrix L, t-Monotonic Incentives (33) holds for

a choice t if and only if matrices L1
t and L0

t are lonesum. In this notation L1
t is the submatrix

consistent of the z-rows in L such that L[z, t] = 1. On the other hand, L0
t consistent of the z-rows in

L such that L[z, t] = 0. It is useful to define the following sets of IV-values Z1 = {z ∈ Z;L[z, t] = 1}
and Z0 = {z ∈ Z;L[z, t] = 0}.

We first show that if L1
t and L0

t are lonesum, then t-Monotonic Incentives holds. For any two

IV-values z ∈ Z0 and z′ ∈ Z1 we have that L[z′, t]− L[z, t] ≥ L[z′, t′]− L[z, t′] ∀ t′ ∈ T \ {t} since

L[z′, t] − L[z, t] = 1. For any two IV-values z, z′ ∈ Z0 we have that L[z′, t] − L[z, t] = 0. But L0
t

is lonesum, thus L[z′, t′] − L[z, t′] ≥ 0 ∀ t′ ∈ T \ {t} or L[z′, t′] − L[z, t′] ≤ 0 ∀ t′ ∈ T \ {t}. Thus,
it must me the case that L[z′, t] − L[z, t] ≥ L[z′, t′] − L[z, t′] ∀ t′ ∈ T \ {t} or L[z′, t] − L[z, t] ≤
L[z′, t′]−L[z, t′] ∀ t′ ∈ T \ {t}. The symmetric argument applies to any two IV-values z, z′ ∈ Z1.

We now prove that if L is binary and t-Monotonic Incentives holds, then it must be the case

that L1
t and L0

t are lonesum. Recall that t-Monotonic Incentives states that L[z, t] − L[z′, t] ≤
L[z′, t′] − L0

t [z
′, t′] for all t′ ∈ T \ {t} or L[z, t] − L[z′, t] ≥ L[z′, t′] − L0

t [z
′, t′] for all t′ ∈ T \ {t}.

Note also that for any two IV-values z, z′ ∈ Z0, we have that L0
t [z, t] = L0

t [z
′, t] = 0. Thus,

L[z, t]−L[z′, t] = 0.

Now suppose that L0
t is not lonesum. Thus there must exist a 2 × 2 submatrix in L0

t that

displays the prohibit pattern of an identity matrix. This means that there must exist z, z′inZ0

and two treatment values t̃, t̃′ such that L[z, t̃] = L[z′, t̃′] = 1 while L[z′, t̃] = L[z, t̃′] = 0. In

this case, we have that L[z′, t̃] − L0
t [z

′, t̃] = −1 while L[z′, t̃′] − L0
t [z

′, t̃′] = 1. This violates the
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t-Monotonic Incentives criteria since: L[z, t]−L[z′, t] < L[z′, t̃′]−L0
t [z

′, t̃′] while L[z, t]−L[z′, t] >

L[z′, t̃]−L0
t [z

′, t̃]. The symmetric proof applies for the case of L1
t .

A.12 Proof of Theorem T.5

we seek to prove that t-EMCO holds if and only if t-CIG is satisfied. Recall that the theorem

applies to IV models described by Assumptions (1)–(3) whose choice incentives are determined by

an incentive matrix L that satisfies Choice Rule (9).

We first prove that t-CIG implies t-EMCO. Consider the IV-change from z to z′. Let L[z, t′]−
L[z′, t′] = c′ for some t′ ∈ T \ {t}. The t-CIG condition (43) states that L[z, t′] − L[z′, t′] = c′ for

all t′ ∈ T \ {t}. Applying the Choice Rule (9) to Ti(z) = t′, we have that:

Ti(z) = t′ ⇒ Ti(z
′) ̸= t′′ for all t′′ ∈ T \ {t, t′}. (78)

Now let L[z, t] − L[z′, t] = c. We have two possibilities: c ≤ c′ or c > c′. If c ≤ c′, we

can apply the choice rule and obtain the Ti(z) = t′ ⇒ Ti(z) ̸= t, which, when combined with

result (78), implies that Ti(z) = t′ ⇒ Ti(z
′) = t′. On the other hand, applying the choice rule to

Ti(z) = t generates no restriction. However, applying the choice rule to Ti(z
′) = t we obtain that

Ti(z) = t ⇒ Ti(z) ̸= t′ for all t′ ∈ T \ {t}. Otherwise stated, we have that Ti(z
′) = t ⇒ Ti(z) = t.

These results satisfy the following t-EMCO inequalities:

1[Ti(z) = t] ≥ 1[Ti(z
′) = t]∀ i and 1[Ti(z) = t′] ≤ 1[Ti(z

′) = t′];∀ i ∈ I, t′ ∈ T \ {t}.

Now suppose c > c′. Applying the choice rule to compare t′ and t does not generate the

restriction that Ti(z) = t′ ⇒ Ti(z
′) ̸= t. Combining this fact with result (78) we have that Ti(z) =

t′ ⇒ Ti(z
′) ∈ {t, t′}. On the other hand, if we apply the choice rule to Ti(z) = t against any choice

t′ ∈ T \ {t} generates the choice restriction Ti(z) = t ⇒ Ti(z) ̸= t′ for any t′ ∈ T \ {t}. Thus, we
that Ti(z) = t⇒ Ti(z) = t. These results satisfy the following inequality condition:

1[Ti(z) = t] ≤ 1[Ti(z
′) = t]∀ i and 1[Ti(z) = t′] ≥ 1[Ti(z

′) = t′];∀ i ∈ I, t′ ∈ T \ {t}.

This proves that t-CIG implies t-EMCO.

We now seek to prove that t-EMCO implies t-CIG. To do so, note that the monotonicity

condition 1[Ti(z) = t′] ≤ 1[Ti(z
′) = t′] is equivalent to the choice restriction Ti(z) = t′ ⇒ Ti(z

′) = t′,

which implies that Ti(z
′) ̸= t′′, for any t′′ ∈ T \ {t′}. According to the choice rule, we must have

that L[z′, t′′]−L[z, t′′] ≤ L[z′, t′]−L[z, t′] for all t′′ ∈ T \ {t′}. In summary, we have that:

1[Ti(z) = t′] ≤ 1[Ti(z
′) = t′]∀ i⇒ L[z′, t′′]−L[z, t′′] ≤ L[z′, t′]−L[z, t′] for all t′′ ∈ T \ {t′}. (79)

The t-EMCO condition is defined in (38)–(39). We first focus on equation (38), which states that

for all t′ ∈ T \ {t}, we have that 1[Ti(z) = t′] ≥ 1[Ti(z
′) = t′];∀ i ∈ I. Consider t′ and t′′ in T \ {t}.

According to (79), 1[Ti(z) = t′] ≥ 1[Ti(z
′) = t′] implies that L[z′, t′′]−L[z, t′′] ≤ L[z′, t′]−L[z, t′].

On the other hand, 1[Ti(z) = t′′] ≥ 1[Ti(z
′) = t′′] implies that L[z′, t′]−L[z, t′] ≤ L[z′, t′′]−L[z, t′′].
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Thus, it must be the case that L[z′, t′] − L[z, t′] = L[z′, t′′] − L[z, t′′]. This rationale applies to all

t′ ∈ T \ {t}. Equation (39) states that for all t′ ∈ T \ {t}, we have that 1[Ti(z) = t′] ≤ 1[Ti(z
′) =

t′];∀i ∈ I.We can apply the symmetric rationale to obtain that L[z, t′]−L[z′, t′] = L[z, t′′]−L[z′, t′′].

We then conclude that t-EMCO implies t-CIG.

A.13 Proof of Corollary C.4

Let L be an incentive matrix where t-CIG (43) holds. The generated response matrix is saturated

w.r.t. to t-EMCO (38) if and only if L[z, t]−L[z′, t] ̸= L[z, t′]−L[z′, t′] for t′ ̸= t and all z, z′ ∈ Z
such that z ̸= z′.

According to T.5, t-CIG (43) implies t-EMCO (38)–(39). Without loss of generality, we can

assume that for z, z′ ∈ Z, we have that:

1[Ti(z) = t] ≤ 1[Ti(z
′) = t]∀ i and 1[Ti(z) = t′] ≥ 1[Ti(z

′) = t′];∀ i ∈ I, t′ ∈ T \ {t}.
Recall that the monotonicity inequality

A.14 Doubly Robust Estimation Algorithm for Response-type Probabilities

Step 1. Partition the sample index I = {1, . . . , n} into K subsets such that ∪K
k=1{Ik} = I, where

the number of partitions K is commonly fixed to five. Let Ic
k = I \ Ik be the complement of Ik

Step 2. For each value t ∈ {1, 2, 3} and each partition k, compute the estimator γ̂t,k,s associated

with the kappa function κs(t, Z,X) by minimizing the following expression:

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

1

2
(h(Zi, Xi)

′γ)2 +
∑
z∈Z

νs(t, z)h(z,Xi)
′γ

+ αγ∥γ∥1, (80)

where γ̂s,t,k is evaluated using all data that is not in Ik, while αγ is the penalty parameter

determined by a cross-validation procedure employing all sampling data.

Step 3. For each value t ∈ {1, 2, 3} and each partition Ik, compute the estimator β̂t,k associated

with the propensity score P (T = t|Z,X) via the least absolute shrinkage and selection operator

(lasso) procedure that minimizes the following expression:

β̂t,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(1[Ti = t]− h(Zi, Xi)
′β)2 + αβ∥β∥1,

where αβ is the penalty parameter also determined by via cross-validation procedure.33

Step 4. Given γ̂s,t,k and β̂t,k, we compute the orthogonal score estimator ψ̂s,i,k for each participant

33Note that the penalty parameters αβ and αγ do not need to be the same, but the functions h(Z,X) are the same
in steps 2 and 3.
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i ∈ Ik and for each partition k :

ψ̂s,k,i ≡
∑
t∈T

h(Zi, Xi)
′γ̂s,t,k ·

(
1[Ti = t]− h(Zi, Xi)

′β̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′β̂t,k

 .

Step 5. The estimator for the propensity score P (S = s) is the average of the orthogonal scores

within partition, that is, ψ̂s,k = |Ik|−1
∑

i∈Ik
∑

t∈T ψ̂s,k,i. The final estimate is the average of the

orthogonal scores across partitions, namely, ψ̂s = n−1
∑K

k=1 ψ̂s,k · |Ik|.

Step 6. Inference is performed via the bootstrap multiplier method. For each partition k, we draw

B samples {W (b)
i }i∈Ik of i.i.d. standard normals to compute:

ψ̂
(b)
s,k = ψ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
ψ̂s,k,i − ψ̂s,k

)
, and ψ̂

(b)
s = n−1

K∑
k=1

ψ̂
(b)
s,k · |Ik|.

We use the distribution of ψ̂
(b)
s to compute the standard error of the estimator for the type proba-

bility.

A few notes on the estimation method are in order. The sample splitting in Step 1 is not

necessary to secure normality of the estimator and can be voided. The estimators in Steps 2 and

3 allow for some degree of flexibility. In our setup, (Z,X)′β̂t,k estimates the propensity score

and h(Z,X)′γ̂s,t,k estimates the kappa function. These estimates can be obtained by suitable

alternative machine learning estimators. For instance, it is possible to transform the minimization

that evaluates γ̂s,t,k in Step 2 into a standard lasso-type estimator.

Let Hk(z) ≡ h(z,X) denotes the |Ic
k| × p matrices that stack h(z,Xi)

′ across participants

i ∈ Ic
k. In the same token, let Hk ≡ h(Z,X) be the matrix that stakes h(Zi, Xi)

′ across i ∈ Ic
k,

and let ιk be the |Ic
k|-dimensional vector of ones. In this notation, the minimization of Step 2 can

be equivalently expressed as:34

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

(h(Zi, Xi)
′θ − h(Zi, Xi)

′γ)2 + αγ∥γ∥1, where θ ≡ (H ′
kHk)

−1

∑
z∈Z

νs(t, z)Hk(z)
′ιk

 .

The term h(Zi, Xi)
′θ can be roughly understood as the projection of the function

∑
z∈Z νs(t, z)h(z,Xi)

into the space generated by h(Zi, Xi). Finally, we use the leave-one-out sampling scheme in all

cross-validation methods.

A.15 Doubly Robust Estimation Algorithm for Identified Counterfactual Out-

comes

Step 1. Partition I into ∪K
k=1{Ik} = I, where Ic

k = I \ Ik.
34The estimator is numerically equivalent to evaluating the minimum of the function in Step 2. The equivalence is

easy be shown when expressing the minimization using matrix notation.
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Step 2. For each k, compute the estimator γ̂t,k,s as:

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

1

2
(h(Zi, Xi)

′γ)2 +
∑
z∈Z

νs,t(z)h(z,Xi)
′γ

+ αγ∥γ∥1, (81)

where αγ is the penalty parameter determined by a cross-validation (leave-one-out) procedure.

Step 3. For each partition k, compute the estimators β̂t,k, and θ̂t,k via lasso:

θ̂t,k ∈ arg min
θ∈Rp

∑
i∈Ic

k

(
Y · 1[Ti = t]− h(Zi, Xi

)′
θ)2 + αθ∥θ∥1,

β̂t,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = t]− h(Zi, Xi

)′
β)2 + αβ∥β∥1,

where αβ, αθ are the penalty parameters determined by cross-validation.

Step 4. Given γ̂s,t,k, β̂t,k, and θ̂t,k, for each agent i ∈ Ik and each partition k, compute the

orthogonal score ψ̂s,i,k for P (S = s) and φ̂s,i,k for E(Y 1[S = s])

ψ̂s,k,i ≡

h(Zi, Xi)
′γ̂s,t,k ·

(
1[Ti = t]− h(Zi, Xi)

′β̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′β̂t,k

 ,

φ̂s,k,i ≡

h(Zi, Xi)
′γ̂s,t,k ·

(
Y · 1[Ti = t]− h(Zi, Xi)

′θ̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′θ̂t,k

 .

Step 5. The estimator for P (S = s) is the average of the orthogonal scores ψ̂s = n−1
∑K

k=1 ψ̂s,k ·
|Ik|, where ψ̂s,k = |Ik|−1

∑
i∈Ik

∑
t∈T ψ̂s,k,i. The estimator for E(Y (t)1[S = s]) is also the average

of the orthogonal scores φ̂s = n−1
∑K

k=1 φ̂s,k · |Ik|, where φ̂s,k = |Ik|−1
∑

i∈Ik
∑

t∈T φ̂s,k,i. The final

estimator for E(Y (t)|S = s) is the ratio φ̂s/ψ̂s.

Step 6. Our inference uses a multiplier bootstrap that draw B samples {W (b)
i }i∈Ik of i.i.d. standard

normals for each partition k. We then compute both scores:

ψ̂
(b)
s,k = ψ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
ψ̂s,k,i − ψ̂s,k

)
, and ψ̂(b)

s = n−1
K∑

k=1

ψ̂
(b)
s,k · |Ik|,

φ̂
(b)
s,k = φ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
φ̂s,k,i − φ̂s,k

)
, and φ̂(b)

s = n−1
K∑

k=1

φ̂
(b)
s,k · |Ik|.

We use the joint distribution {ψ̂(b)
s , φ̂

(b)
s }Bb=1 to estimate the variance matrix of the orthogonal

scores denoted by V̂ (ψ̂s, φ̂s). We compute the standard error for the ratio φ̂s/ψ̂s using the Delta

method, namely, σ̂ =
(
n−1ω′V̂ (ψ̂s, φ̂s)ω

)1/2
where ω = [−(φ̂s/ψ̂

2
s), 1/ψ̂s]

′.

The steps above differ from the estimation of type probabilities in a few instances. Step 2 uses

the function νs,t(Z) instead of νs(T,Z). Steps 3 computes an additional parameter θ while Step 4

computes two orthogonal scores. Steps 5 states that our estimator is a ratio of orthogonal scores
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means and Step 6 uses bootstrap and the delta method to evaluate the standard error of the ratio.

A.16 Doubly Robust Estimation Algorithm for Counterfactuals Using Com-

parison Compliers

We first consider the task of evaluating E(Y (1)|S = s12). Steps 1, 5 and 6 of the previous procedure

remain the same. Steps 2–4 are modified as following.

Step 2’. For each k, compute the estimator γ̂t,k,s as:

γ̂1,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

(
1

2
(h(Zi, Xi)

′γ)2 +−(h(1, Xi)
′ − h(0, Xi))

′γ

)
+ αγ∥γ∥1. (82)

Step 3’. For each partition k, compute the parameters β̂1,k, β̂2,k, θ̂1,k, π̂1,k, and π̂2,k, via the

following lasso estimations:

θ̂1,k ∈ arg min
θ∈Rp

∑
i∈Ic

k

(
Y · 1[Ti = 1]− h(Zi, Xi

)′
θ)2 + αθ∥θ∥1,

β̂1,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = 1]− h(Zi, Xi

)′
β)2 + αβ,1∥β∥1,

β̂2,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = 2]− h(Zi, Xi

)′
β)2 + αβ,2∥β∥1,

π̂1,k ∈ arg min
π∈Rp

∑
i∈Ic

k

(
1[Ti = 1]h(Zi, Xi

)′
γ̂1,k − g(Xi

)′
π)2 + απ,1∥π∥1,

π̂2,k ∈ arg min
π∈Rp

∑
i∈Ic

k

(
1[Ti = 2]h(Zi, Xi

)′
γ̂1,k − f(Xi

)′
π)2 + απ,2∥π∥1,

where f(X) ≡ (f1(X), . . . , fq(X))′ denote a q-dimensional vector of functions of baseline variable.

Step 4’. Given γ̂s,t,k, β̂t,k, and θ̂t,k, we can compute the orthogonal score ψ̂s,i,k regarding P (S =

s21) for each agent i ∈ Ik and each partition k :

ψ̂s,k,i ≡
(
h(Zi, Xi)

′γ̂s,t,k ·
(
1[Ti = 2]− h(Zi, Xi)

′β̂t,k

)
+ h(1, Xi)

′ − h(0, Xi)
′β̂t,k

)
.

The orthogonal score for E(Y (1)1[S = s21]) is cumbersome. We define the following terms

to facilitate notation: Θi ≡ h(Zi, Xi

)′
θ̂1,k, Λ1,i ≡ h(Zi, Xi

)′
β̂1,k, Λ2,i ≡ h(Zi, Xi

)′
β̂2,k, ∆i ≡

h(0, Xi)
′−h(1, Xi), κi ≡ h(Zi, Xi

)′
γ̂1,k. Ui ≡ f(Xi)

′π̂1,k, and Ci ≡ f(Xi)
′π̂2,k/Ui. In this notation,

we can define the orthogonal score for E(Y (1)1[S = s21]) associated to agent i ∈ Ik and each

partition k as:

φ̂s,k,i ≡ ((Yi. ∗ 1[Ti = 1]−Θi)κi + (∆iΘi))Ci − (((1[Ti = 2]− Λ2,i)κi) · (∆iΘi))
1

Ui

− (((1[Ti = 1]− Λ1,i)κi) · (∆iΘi))
C

Ui
− (((∆iΛ2,i)) · (∆iΘi))

1

Ui
− (((∆iΛ1,i)) · (∆iΘi))

C

Ui
.

As mentioned, the Steps 5–6 remains the same. This estimator evaluates E(Y (1)|S = s12) which
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enable us to estimate the causal effect E(Y (2)− Y (1)|S = s12) since E(Y (2)|S = s12) was already

estimated. The standard error of the causal effect is obtained via the multiplier bootstrap. The

counterfactual outcome E(Y (1)|S = s13) is obtained by replacing the choice 2 in Steps 3’ and Step

4’ by the treatment choice 3.
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