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A Mathematical Proofs

A.1 Proof of Equation (8)

Let the response vector be S = [T (z1), ..., T (zn)]
′ where supp(Z) = {z1, ...zn}. Note that the

treatment T can be expressed as T = [1[Z = z1], ...,1[Z = z1]]S. This implies that T depends
only on Z when conditioned on S. Moreover, T is deterministic given Z and S. The Exogeneity
Condition 2 states that Z ⊥⊥ (Y (t), T (z), Y (z)). This assumption implies the following relationships:

Z ⊥⊥ S (65)

Y (t) ⊥⊥ (Z, T )|S (66)

Relationship (65) is due to Z ⊥⊥ T (z). Relationship (66) arises from Y (t) ⊥⊥ Z|T (z) and the fact
that T is a function of Z when conditioned on S. Finally, the Exclusion Restriction (1) enable us
to express the observed outcome as:

Y =
∑

t∈supp(T )

1[T = t] · Y (t). (67)

The derivation of the equation (8) is displayed below:

E(Y |Z = z, T = t) =
∑

s∈supp(S)

E(Y |Z = z, T = t,S = s)P (S = s|T = t, Z = z)

=
∑

s∈supp(S)

E(Y |Z = z, T = t,S = s)
P (T = t|S = s, Z = z)P (S = s|Z = z)

P (T = t|Z = z)

⇒ E(Y |Z = z, T = t)P (T = t|Z = z) =
∑

s∈supp(S)

E(Y |Z = z, T = t,S = s)P (T = t|S = s, Z = z)P (S = s|Z = z)

=
∑

s∈supp(S)

E(Y |Z = z, T = t,S = s)P (T = t|S = s, Z = z)P (S = s)

=
∑

s∈supp(S)

E(Y |Z = z,S = s)1[T = t|S = s, Z = z]P (S = s)

=
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(Y |Z = z, T = t,S = s)P (S = s)

=
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(Y (t)|Z = z, T = t,S = s)P (S = s)

=
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(Y (t)|S = s)P (S = s)

The first equality applies the law of iterated expectations to the expectation E(Y |Z = z, T = t).
The second equality uses the Bayes’ theorem. The third equality multiplies both sides of the
equation by P (T = t|Z = z). The fourth equality arises from (65). The fifth equality is due the
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fact that T is deterministic conditioned on S and Z. Thus P (T = t|S = s, Z = z) is either zero or
one. The sixth equality simply reorders the terms of the summation. The seventh equality is due
to (67). The eight equality is due to (66).

A.2 Proof of Proposition P.1

We seek to obtain a choice rule the stems from WARP and the budget set relationships defined
by (15). It is useful to define some basic nomenclature to proof the proposition.

If we fix the instrument to a value z ∈ supp(Z), then all the bundles (t, g); g ∈ Bi(z, t) for any
t ∈ supp(T ) are said to be available for family i. If a family prefers a bundle (t, g) instead of (t′, g′)
when both are available, then (t, g) is said to be directly and strictly revealed preferred to (t′, g′),
that is, (t, g) ≻d

i (t′, g′). In particular, if a family i chooses choice t when the IV value is fixed to z,
that is, Ti(z) = t, then there exists a bundle (t, g∗) for some g∗ ∈ Bi(z, t) that is strictly revealed
preferred to all available bundles, namely, all the bundles (t′, g′); g′ ∈ Bi(z, t

′) for any choices t′ that
are different than t. Notationally, we have that (t, g∗) ≻d

i (t′, g′) ∀ g′ ∈ Bi(z, t
′); t′ ∈ supp(T ) \ {t}.

The WARP criteria of Richter (1971) states that if bundle (t, g) is directly and strictly revealed
preferred to (t′, g′), that is, (t, g) ≻d

i (t′, g′), then (t′, g′) cannot be revealed preferred to (t, g),
namely, (t, g) ≻d

i (t′, g′) ⇒ (t′, g′) \≻d
i (t, g).

Each (z, t)-entry of the incentive matrix L, that is L[z, t] presents a value that is a relative rank
of incentives of z towards choice t. Each t-column of matrix presents the relative rank of incentives
for choice t across the IV-values. This ranking renders the budget set relationships in (15), which
states that for a given choice t, L[z, t] ≤ L[z′, t] imply that Bi(z, t) ⊆ Bi(z

′, t) for all i ∈ I.
It is useful to prove the following Lemma regarding WARP before proving the main proposition:

Lemma L.1. Under budget set relationships (15) and WARP, the following choice rule holds:

If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′.

Proof. Suppose that family i chooses choice t instead of t′ when the IV value is fixed to z. Thus
there exist a bundle (t, g∗) for some g∗ ∈ Bi(z, t) such that (t, g∗) ≻d

i (t′, g′) for all g′ ∈ Bi(z, t
′).

Now consider a shift of the IV from z to z′. Suppose that 0 ≤ L[z′, t] − L[z, t] holds. According
to (15), the budget set Bi(z

′, t) is at least as big as Bi(z, t
′). In particular, the bundle (t, g∗) is

available. Moreover, suppose that L[z′, t′]−L[z, t′] ≤ 0 also holds. This mean that the budget set
Bi(z

′, t′) is not larger than Bi(z, t
′) and, according to WARP, the bundle (t, g∗) is preferred to all

the bundles (t′, g′); g′ ∈ Bi(z
′, t′). Thereby, family i will not choose any bundle (t′, g′); g′ ∈ Bi(z

′, t′)
over (t, g∗). Consequently, we have that Ti(z

′) cannot be t′, namely, ti(z
′) ̸= t′.

Note that Lemma L.1 is consistent with the relative ranking property of the incentive matrix.
Any strictly monotonic increasing transformation of the matrix generates the same set of choice
restrictions.

The Normal Choice is a statement that compares the relative incentive gain between treatment
choices when the instrument changes. Normal choice is defined as:

(t ≻i t
′)|z and L[z′, t]−L[z, t] = L[z′, t′]−L[z, t′] then (t′ \≻i t)|z′,

We are now equipped to prove the main proposition. Suppose that:

Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] ≡ ℓ.
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Note that L[z′, t′] ≤ L[z, t′] + ℓ. Now consider an IV-value z∗ that offers the same incentives of z′

towards t and at least as much incentives than z′ towards t′. Namely, let the incentives associated
with z∗ be: L[z∗, t] ≡ L[z′, t] and L[z∗, t′] = L[z, t′] + ℓ ≥ L[z′, t′]. We can apply normal choice to
obtain the following preference restriction:

(t ≻i t
′)|z and L[z∗, t]−L[z, t] = L[z∗, t′]−L[z, t′] = ℓ, then (t′ \≻i t)|z∗.

This means that exists a bundle (t, g∗) for some g∗ ∈ Bi(z
∗, t) such that (t, g∗) ≻d

i (t′, g′) for all
g′ ∈ Bi(z

∗, t′). Note that Bi(z
′, t) = Bi(z

∗, t) and Bi(z
′, t′) ⊆ Bi(z

∗, t). Thus, the bundle (t, g∗) is
available under z′ since g∗ ∈ Bi(z

′, t). Moreover, the bundle (t, g∗) remains preferred to all bundles
(t′, g′) for all g′ ∈ Bi(z

′, t′). Therefore, according to WARP, the i agent does not choose t′ under z′.

A.3 Proof of Proposition P.2

Lemma L.1 states that under WARP, the following choice rule holds:

Ti(z) = t, and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t], then Ti(z
′) ̸= t′. (68)

The choice rule above compares two choices and two instrumental variables. There are six pos-
sibilities for distinct choices (t, t′) such that t ∈ {th, tm, tl} and t′ ∈ {th, tm, tl} \ {t}. There are
also six possibilities for the set of distinct instrumental values (z, z′) such that z ∈ {zc, z8, ze} and
z′ ∈ {zc, z8, ze} \ {z}. Thus, there are a total of 36 choice requirements of the type in (68) that can
be checked using MTO data. Only 20 of these 36 possibilities are biding. The resulting 20 choice
restrictions are presented in Table A.1. These restrictions are summarized into the eight choice
restrictions displayed in Table A.2. The two last choice restrictions of Table A.2 are redundant
given the first six restrictions.

In total, the revealed preference analysis generates seven choice restrictions. The seventh choice
restriction is due to the Normal choice assumption (28), that is, Ti(zc) ̸= th ⇒ Ti(z8) = Ti(zc).
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Table A.1: Choice Restrictions Due to WARP

Revealed Incentive Choice

# Choice Inequalities Statement

Ti(z) = t L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] T (z′) ̸= t′

1 Ti(zc) = th, L[ze, tm]−L[zc, tm] = 0 ≤ 0 ≤ 0 = L[ze, th]−L[zc, th] Ti(ze) ̸= tm

2 Ti(zc) = tm, L[z8, th]−L[zc, th] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[zc, tm] Ti(z8) ̸= th
3 Ti(zc) = tm, L[ze, th]−L[zc, th] = 0 ≤ 0 ≤ 0 = L[ze, tm]−L[zc, tm] Ti(ze) ̸= th

4 Ti(zc) = tl, L[z8, th]−L[zc, th] = 0 ≤ 0 ≤ 1 = L[z8, tl]−L[zc, tl] Ti(z8) ̸= th
5 Ti(zc) = tl, L[ze, th]−L[zc, th] = 0 ≤ 0 ≤ 1 = L[ze, tl]−L[zc, tl] Ti(ze) ̸= th
6 Ti(zc) = tl, L[ze, tm]−L[zc, tm] = 0 ≤ 0 ≤ 1 = L[ze, tl]−L[zc, tl] Ti(ze) ̸= tm

7 Ti(z8) = th, L[zc, tm]−L[z8, tm] = −1 ≤ 0 ≤ 0 = L[zc, th]−L[z8, th] Ti(zc) ̸= tm
8 Ti(z8) = th, L[ze, tm]−L[z8, tm] = −1 ≤ 0 ≤ 0 = L[ze, th]−L[z8, th] Ti(ze) ̸= tm
9 Ti(z8) = th, L[zc, tl]−L[z8, tl] = −1 ≤ 0 ≤ 0 = L[zc, th]−L[z8, th] Ti(zc) ̸= tl
10 Ti(z8) = th, L[ze, tl]−L[z8, tl] = 0 ≤ 0 ≤ 0 = L[ze, th]−L[z8, th] Ti(ze) ̸= tl

11 Ti(z8) = tl, L[ze, th]−L[z8, th] = 0 ≤ 0 ≤ 0 = L[ze, tl]−L[z8, tl] Ti(ze) ̸= th
12 Ti(z8) = tl, L[ze, tm]−L[z8, tm] = −1 ≤ 0 ≤ 0 = L[ze, tl]−L[z8, tl] Ti(ze) ̸= tm

13 Ti(ze) = th, L[zc, tm]−L[ze, tm] = 0 ≤ 0 ≤ 0 = L[zc, th]−L[ze, th] Ti(zc) ̸= tm
14 Ti(ze) = th, L[zc, tl]−L[ze, tl] = −1 ≤ 0 ≤ 0 = L[zc, th]−L[ze, th] Ti(zc) ̸= tl
15 Ti(ze) = th, L[z8, tl]−L[ze, tl] = 0 ≤ 0 ≤ 0 = L[z8, th]−L[ze, th] Ti(z8) ̸= tl

16 Ti(ze) = tm, L[zc, th]−L[ze, th] = 0 ≤ 0 ≤ 0 = L[zc, tm]−L[ze, tm] Ti(zc) ̸= th
17 Ti(ze) = tm, L[z8, th]−L[ze, th] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[ze, tm] Ti(z8) ̸= th
18 Ti(ze) = tm, L[zc, tl]−L[ze, tl] = −1 ≤ 0 ≤ 0 = L[zc, tm]−L[ze, tm] Ti(zc) ̸= tl
19 Ti(ze) = tm, L[z8, tl]−L[ze, tl] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[ze, tm] Ti(z8) ̸= tl

20 Ti(ze) = tl, L[z8, th]−L[ze, th] = 0 ≤ 0 ≤ 0 = L[z8, tl]−L[ze, tl] Ti(z8) ̸= th

This table displays the binding choice restrictions generated by the WARP restriction below

If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′.

when applied to the MTO incentive matrix:

MTO Incentive Matrix L =

th tm tl[ ]
0 0 0
0 1 1
0 0 1

zc
z8
ze
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Table A.2: Summary of Choice Restrictions generated by applying WARP to the MTO Incentive
Matrix

# Choice Restrictions

4,5,6 Ti(zc) = tl ⇒ Ti(ze) = tl and Ti(z8) ̸= th
2,3 Ti(zc) = tm ⇒ Ti(ze) ̸= th and Ti(z8) ̸= th

16,17,18,19 Ti(ze) = tm ⇒ Ti(zc) = tm and Ti(z8) = tm

13,14,15 Ti(ze) = th ⇒ Ti(zc) = th and Ti(z8) ̸= tl
7,8,9,10 Ti(z8) = th ⇒ Ti(zc) = th and Ti(ze) = th

11,12 Ti(z8) = tl ⇒ Ti(ze) = tl

1 Ti(zc) = tl ⇒ Ti(ze) ̸= tm
20 Ti(ze) = tl ⇒ Ti(z8) ̸= th

A.4 WARP L.1 Subsumes Standard Monotonicity Conditions (10)–(12)

This section shows that Lemma L.1 is able to subsume and outperform the conditions (10)–(12).
The monotonicity condition (10), states that 1[Ti(zc) = tl] ≤ 1[Ti(ze) = tl]. It comprise two choice
restrictions: Ti(zc) = tl ⇒ Ti(ze) ̸= th and Ti(zc) = tl ⇒ Ti(ze) ̸= tm. These restrictions can be by
applying L.1 to tl against th, tm when the IV changes from zc to ze :

Ti(zc) = tl and L[ze, th]−L[zc, th] = 0 ≤ 1 ≤ 1 = L[ze, tl]−L[zc, tl] ⇒ Ti(ze) ̸= th.

Ti(zc) = tl and L[ze, tm]−L[zc, tm] = 0 ≤ 1 ≤ 1 = L[ze, tl]−L[zc, tl] ⇒ Ti(ze) ̸= tm.

The monotonicity condition (11), states that 1[Ti(zc) ∈ {tm, tl}] ≤ 1[Ti(z8) ∈ {tm, tl}]. It
comprise two choice restrictions: Ti(zc) = tl ⇒ Ti(z8) ̸= th and Ti(zc) = tm ⇒ Ti(z8) ̸= th. These
restrictions can be by applying L.1 to tl, tm against th when the IV changes from zc to z8 :

Ti(zc) = tl and L[z8, th]−L[zc, th] = 0 ≤ 0 ≤ 1 = L[z8, tl]−L[zc, tl] ⇒ Ti(z8) ̸= th.

Ti(zc) = tm and L[z8, th]−L[zc, th] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[zc, tm] ⇒ Ti(z8) ̸= th.

The monotonicity condition (12), states that 1[Ti(ze) = tm] ≤ 1[Ti(z8) = tm]. It comprise two
choice restrictions: Ti(ze) = tm ⇒ Ti(z8) ̸= th and Ti(ze) = tm ⇒ Ti(z8) ̸= tl. These restrictions
can be by applying L.1 to tm against th, te when the IV changes from ze to z8 :

Ti(ze) = tm and L[z8, th]−L[ze, th] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[ze, tm] ⇒ Ti(ze) ̸= th.

Ti(ze) = tm and L[z8, tl]−L[ze, tl] = 0 ≤ 0 ≤ 1 = L[z8, tm]−L[ze, tm] ⇒ Ti(ze) ̸= tm.

Lemma L.1 yields additional choice restrictions that are not subsumed by the monotonicity
conditions (10)–(12). For example, equation (69) applies L.1 to tm against th when the IV changes
from ze to zc :

Ti(ze) = tm and L[zc, th]−L[zc, th] = 0 ≤ 0 = L[zc, tm]−L[ze, tm] ⇒ Ti(zc) ̸= th. (69)

Equation (69) generates the choice restriction Ti(ze) = tm ⇒ Ti(zc) ̸= th. This restriction is not
implied by the monotonicity conditions (10)–(12). Nevertheless, the choice restriction is intuitive.
Note that neither ze or zc offers incentives towards choice th or tm. Thus, if a family chooses tm
under ze, then the family has no incentives to switch its decision towards th under zc.
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A.5 Identification of Counterfactual Outcomes in T.1

Heckman and Pinto (2018) show that for any response matrix R and any subset of response types
S ⊂ supp(S), we have that:

E(Y (t)|S ∈ S) is identified if and only if b(S)′(Kt)b(S) = 0, (70)

where:

1. I is the identity matrix,

2. Bt ≡ 1[R = t] is a binary matrix that indicates which elements in R are equal to t,

3. B+
t is the Moore-Penrose pseudo-inverse of Bt,

4. Kt = (I7×7 −B+
t Bt) is a symmetric NS ×NS matrix,

5. b(S) is the binary vector that indicates which response type belongs to S, namely:

b(S) = [1[sah ∈ S],1[sam ∈ S],1[sal ∈ S],1[sfc ∈ S],1[spl ∈ S],1[spm ∈ S],1[sph ∈ S]]′.

The Moore-Penrose matrix is unique and always exists for any real-valued matrix Magnus and
Neudecker (1999). If E(Y (t)|S ∈ S) is identified, then it can be evaluated by the expression

E(Y (t)|S ∈ S) = b(S)′B+
t (QZ(t)⊙ PZ(t))

b(S)′B+
t PZ(t)

.

Consider the following matrices for the choice of high-poverty neighborhood th :

Bth =

[ ]1 0 0 1 1 0 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1 ⇒ B+

th
=





0 1 0
0 0 0
0 0 0
0.5 0 −0.5
0.5 0 −0.5
0 0 0
0 −1 1

⇒ Kth =





0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 −0.5 0 0
0 0 0 −0.5 0.5 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

(71)

Equation (73) presents the binary matrix Btl = 1[R = tl] which has the same dimension of the
response matrix R in (32) and takes value 1 if the respective element in R is tl or zero otherwise.
The seven columns of Btl are associated with the respective sequence of response types:

sah, sam, sal, sfc, spl, spm, sph.

The equation also shows the pseudo-inverse of Btl , that is B+
tl

and the matrix (I7×7 −B+
th
Bth).

Theorem (T.1) states that the counterfactual mean E(Y (th)|S ∈ S) is identified for the follow-
ing sets of response types S ∈ {{sah}, {sph}, {sfc, spl}}. The indicator vectors for each subset of
response types are:

b({sah}) = [1, 0, 0, 0, 0, 0, 0]′,

b({sph}) = [0, 0, 0, 0, 0, 0, 1]′,

b({sfc, spl}) = [0, 0, 0, 1, 1, 0, 0]′.
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Note thatKth is symmetric. Its first row/column are zero which implies that b({sah})′Kthb({sah}) =
0, thus by (70), E(Y (th)|S = sah) is identified. The last row/column of Kth are zero, which im-
plies that b({sph})′Kthb({sph}) = 0, thus by (70), E(Y (th)|S = sph) is identified. Lastly, it is
easy to see that the sum of the fourth and fifth rows/columns of Kth are zero, which implies that
b({sfc, spl})′Kthb({sfc, spl}) = 0, and thereby E(Y (th)|S ∈ {sfc, spl) is identified.

The matrices for medium-poverty neighborhood tm are displayed below:

Btm =

[ ]0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 0 0 0 ⇒ B+

tm =





0 0 0
0 0 1
0 0 0

−0.5 0.5 0
0 0 0
1 0 −1

−0.5 0.5 0

⇒ Ktm =





1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 0 0 −0.5
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 −0.5 0 0 0.5

(72)

Applying the same analysis of the choice th to choice tm we have that:

b({sam}) = [0, 1, 0, 0, 0, 0, 0]′ ⇒ b({sam})′Ktmb({sam}) = 0

b({spm}) = [0, 0, 0, 0, 0, 1, 0]′ ⇒ b({spm})′Ktmb({spm}) = 0

b({sfc, sph}) = [0, 0, 0, 1, 0, 0, 1]′ ⇒ b({sfc, sph})′Ktmb({sfc, sph}) = 0.

According to equation (70), we have that E(Y (tm)|S = sam), E(Y (tm)|S = spm) and E(Y (tm)|S ∈
{sfc, sph}) are identified.

The matrices for low-poverty neighborhood tl are displayed below:

Btl =

[ ]0 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0 ⇒ B+

tl
=





0 0 0
0 0 0
1 0 0
0 −0.5 0.5
−1 1 0
0 −0.5 0.5
0 0 0

⇒ Ktl =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.5 0 −0.5 0
0 0 0 0 0 0 0
0 0 0 −0.5 0 0.5 0
0 0 0 0 0 0 1

(73)

Applying the same analysis of the choice th to choice tm we have that:

b({sal}) = [0, 0, 1, 0, 0, 0, 0]′ ⇒ b({sal})′Ktlb({sal}) = 0

b({spl}) = [0, 0, 0, 0, 1, 0, 0]′ ⇒ b({spl})′Ktlb({spl}) = 0

b({sfc, spm}) = [0, 0, 0, 1, 0, 1, 0]′ ⇒ b({sfc, spm})′Ktlb({sfc, spm}) = 0.

According to equation (70), we have that E(Y (tl)|S = sal), E(Y (tl)|S = spl) and E(Y (tl)|S ∈
{sfc, spm}) are identified.

A.6 Proof of Theorem T.2 (Identification of Response type Probabilities)

Item (i) of the theorem states that all response type probabilities are identified. This proof stems
from equation (9). The matrix version of the equation is given by:

PZ(t) = Bt · PS ; t ∈ {th, tm, tl}, (74)

where PZ(t) = [P(T = t|Z = zc),P(T = t|Z = z8),P(T = t|Z = ze)]
′ is the 3× 1 vector of propen-

sity scores. It is useful to represent this vector using the expectation of the treatment indicator
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Dt = 1[T = t] conditioned on the instrument, that is:

PZ(t) = [E(Dt|Z = zc), E(Dt|Z = z8), E(Dt|Z = ze)]
′ (75)

= [P(T = t|Z = zc),P(T = t|Z = z8),P(T = t|Z = ze)]
′ . (76)

The entity PS in the left-hand side of equation (74) is the vector of response type probabilities
defined as:

PS =





P(S = sah)
P(S = sam)
P(S = sal)
P(S = sfc)
P(S = spl)
P(S = spm)
P(S = sph)

. (77)

The matrix Bt in (74) is defined as Bt = 1[R = t] which is a binary 3 × 7 matrix that indicates
which elements in R are equal to t ∈ {tl, tm, th}. We can stack equation (74) across neighborhood
choices to generate the following equation: PZ(th)

PZ(tl)
PZ(tm)

 = BT · PS , where BT ≡

 Bth

Btm

Btl

 . (78)

Heckman and Pinto (2018) show that the response type probabilities are point-identified if and
only if the column rank of BT is equal to the number of response types, namely rank(BT ) = 7.
The matrix BT is presented below:

BT ≡

 Bth

Btm

Btl

 =





1 0 0 1 1 0 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0

(79)

It is easy to check that the columns are linear independent, which implies that rank(BT ) = 7. The
response type probabilities are identified as PS = B+

T [PZ(th)
′,PZ(tl)

′,PZ(tm)′]′, where B+
T is the

Moore-Penrose pseudo-inverse of BT . We can use the fact that P (T = th|Z = z) + P (T = tm|Z =
z) + P (T = tl|Z = z) = 1 for each z ∈ {zc, z8, ze} in order to write the vector of response type
probabilities as:





P(S = sah)
P(S = sam)
P(S = sal)
P(S = sfc)
P(S = spl)
P(S = spm)
P(S = sph)

=





0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 −1 0 1 0 −1 1
0 0 0 0 0 0 −1 1 0
0 0 0 1 0 −1 0 0 0
0 −1 1 0 0 0 0 0 0





E(Dth |Z = zc)
E(Dth |Z = z8)
E(Dth |Z = ze)
E(Dtm |Z = zc)
E(Dtm |Z = z8)
E(Dtm |Z = ze)
E(Dtl |Z = zc)
E(Dtl |Z = z8)
E(Dtl |Z = ze)

.

Item (ii) of the theorem states that all the expected values of baseline variables conditioned on re-
sponse types are identified. Notationally, we have that E(X|S = s); s ∈ {sah, sam, sal, sfc, spl, spm, sph}
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are identified. The proof of this statement stems from equation (8) and the fact that the the treat-
ment T does not cause baseline variables X, therefore X(t) = X(t′) for all t, t′ ∈ {th, tm, tl}. Note
that X play the role of special outcomes for which the IV properties (1)–(3) hold. These baseline
variables do not include pre-intervention variables that were used in the randomization protocol of
the instrumental variable, such as the intervention sites. Now consider the following derivation:

E(X|T = t, Z = z)P(T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(X(t)|S = s)P(S = s)

E(X|T = t, Z = z)P(T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(X|S = s)P(S = s),

E(X ·Dt|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]E(X|S = s)P(S = s), (80)

where the first equality is due to equation (8), the second equality is due to X(t) = X(t′) for all
t, t′ ∈ {th, tm, tl}, and the last equation rewrites is due to E(X|T = t, Z = z)P(T = t|Z = z) =
E(X ·Dt|Z = z) such that Dt = 1[T = t] denotes the treatment indicator.

The matrix version of equation (80) is given by:

EXZ(t) = Bt ·EXS ; t ∈ {th, tm, tl}, (81)

where EXZ(t) = [E(XDt|Z = zc), E(XDt|Z = z8), E(XDt|Z = ze)]
′ is the vector of expectations

of the baseline variable conditioned on the instrument and EXS is the vector of expectations of the
baseline variable conditioned on the response types times the response type probabilities:

EXS =





E(X|S = sah)P(S = sah)
E(X|S = sam)P(S = sam)
E(X|S = sal)P(S = sal)
E(X|S = sfc)P(S = sfc)
E(X|S = spl)P(S = spl)

E(X|S = spm)P(S = spm)
E(X|S = sph)P(S = sph)

.

Note that the equation (81), EXZ(t) = Bt · EXS is closely related to equation (74), PZ(t) =
Bt · PS , Indeed, equation (81) can be obtained by replacing each entry E(Dt|Z = z) in PZ(t) by
E(XDt|Z = z) and each entry P(S = s) in PS by E(X|S = s)P(S = s). If we follow the same
argument of item (i) of this proof, we have that E(X|S = s)P(S = s) for each response type are
identified by:





E(X|S = sah)P(S = sah)
E(X|S = sam)P(S = sam)
E(X|S = sal)P(S = sal)
E(X|S = sfc)P(S = sfc)
E(X|S = spl)P(S = spl)

E(X|S = spm)P(S = spm)
E(X|S = sph)P(S = sph)

=
1

9





1 7 1 1 −2 1 1 −2 1
1 1 −2 1 1 7 1 1 −2
−2 1 1 −2 1 1 7 1 1
3 3 −6 −6 3 3 3 −6 3
3 −3 0 3 −3 0 −6 6 0
−3 0 3 6 0 −6 −3 0 3
0 −6 6 0 3 −3 0 3 −3

︸ ︷︷ ︸
B+

T





E(XDth |Z = zc)
E(XDth |Z = z8)
E(XDth |Z = ze)
E(XDtm |Z = zc)
E(XDtm |Z = z8)
E(XDtm |Z = ze)
E(XDtl |Z = zc)
E(XDtl |Z = z8)
E(XDtl |Z = ze)

.

The equation above identifies E(X|S = s)P(S = s) for all response types. Recall that the response
type probabilities are identified in item (i). Therefore, E(X|S = s) are identified for all response
types.

9



A.7 Proof of Proposition P.4

According to equation 6, the TOT parameter that compares the experimental and control groups
is given by:

TOTe =
E(Y |Z = ze)− E(Y |Z = zc)

P (Ce = 1|Z = ze)
,

where Ce indicates if the experimental voucher is used. We can rewrite the terms in the in the
numerator of TOTe as:

E(Y |Z = ze) =
∑

t∈{th,tm,tl}

E(Y |T = t, Z = ze)P (T = t|Z = ze)

and E(Y |Z = ze) =
∑

t∈{th,tm,tl}

E(Y |T = t, Z = zc)P (T = t|Z = zc)

We can then use equation (8) and the response matrix (29) to express each term E(Y |T = t, Z =
z)P (T = t|Z = z) as a sum of counterfactual outcomes conditioned on response types:

E(Y |Z = ze) = E(Y (th)|S = sah)P (S = sah) + E(Y (tm)|S = sam)P (S = sam)

+ E(Y (tl)|S = sal)P (S = sal) + E(Y (tl)|S = sfc)P (S = sfc)

+ E(Y (tl)|S = spl)P (S = spl) + E(Y (tl)|S = spm)P (S = spm) + E(Y (th)|S = sph)P (S = sph),

E(Y |Z = zc) = E(Y (th)|S = sah)P (S = sah) + E(Y (tm)|S = sam)P (S = sam)

+ E(Y (tl)|S = sal)P (S = sal) + E(Y (th)|S = sfc)P (S = sfc)

+ E(Y (th)|S = spl)P (S = spl) + E(Y (tm)|S = spm)P (S = spm) + E(Y (tl)|S = sph)P (S = sph).

The voucher effect E(Y |Z = ze)− E(Y |Z = zc) can be rewritten as:

E(Y |Z = ze)− E(Y |Z = zc) = E(Y (tl)− Y (th)|S = sfc)P (S = sfc)

+ E(Y (tl)− Y (th)|S = spl)P (S = spl) + E(Y (tl)− Y (tm)|S = spm)P (S = spm),

= E(Y (tl)− Y (th)|S ∈ {sfc, spl})P (S ∈ {sfc, spl}) + E(Y (tl)− Y (tm)|S = spm)P (S = spm).

Thus TOT effect that compares experimental versus control groups is given by:

TOTe =
E(Y (tl)− Y (th)|S ∈ {sfc, spl})P (S ∈ {sfc, spl}) + E(Y (tl)− Y (tm)|S = spm)P (S = spm)

P (S ∈ {sfc, spl, spm})
· ξe,

s.t.ξe =
P (S ∈ {sfc, spl, spm})
P (Ce = 1|Z = ze)

.

We can apply analogous arguments to examine the causal content of the the TOT parameter
that compares the Section 8 and control groups. The TOT parameter is given by:

TOT8 =
E(Y |Z = z8)− E(Y |Z = zc)

P (C8 = 1|Z = z8)
,

where C8 indicates if the Section 8 voucher is used. The expectation E(Y |Z = z8) can be expressed
as:
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E(Y |Z = z8) = E(Y (th)|S = sah)P (S = sah) + E(Y (tm)|S = sam)P (S = sam)

+ E(Y (tl)|S = sal)P (S = sal) + E(Y (tm)|S = sfc)P (S = sfc)

+ E(Y (tl)|S = spl)P (S = spl) + E(Y (tm)|S = spm)P (S = spm) + E(Y (tm)|S = sph)P (S = sph).

The voucher effect E(Y |Z = z8)− E(Y |Z = zc) can be rewritten as:

E(Y |Z = z8)− E(Y |Z = zc) = E(Y (tm)− Y (th)|S = sfc)P (S = sfc)

+ E(Y (tl)− Y (th)|S = spl)P (S = spl) + E(Y (tm)− Y (th)|S = sph)P (S = sph),

= E(Y (tl)− Y (th)|S = spl)P (S = spl) + E(Y (tm)− Y (th)|S ∈ {sfc, sph})P (S ∈ {sfc, sph}).

Thus TOT effect that compares Section 8 versus control groups is given by:

TOT8 =
E(Y (tl)− Y (th)|S = spl)P (S = spl) + E(Y (tm)− Y (th)|S ∈ {sfc, sph})P (S ∈ {sfc, sph}

P (S ∈ {sfc, spl, sph})
· ξ8,

s.t.ξ8 =
P (S ∈ {sfc, spl, sph})
P (C8 = 1|Z = z8)

.

A.8 Proof of Theorem T.3

Table A.3 presents which response types are eliminated by the monotonicity conditions in T.3. The
response types that survive the elimination process are precisely those displayed in the response
matrix 29. It remains to prove that no other set of monotonicity conditions of the type described
by unordered monotonicity 45 generates the same response matrix. To do so, it suffices to show
that a change the direction of each the monotonicity conditions violates a pattern of counterfactual
choices displayed in the response matrix. For convenience, the response matrix is presented below.

R =

sah sam sal sfc spl spm sph[ ]th tm tl th th tm th
th tm tl tm tl tm tm
th tm tl tl tl tl th

Ti(zc)
Ti(z8)
Ti(ze)

The items below indicate which counterfactual choice pattern is violated if we reverse the
direction of each of the monotonicity conditions in T.3.

1. 1[Ti(zc) = th] ≤ 1[Ti(z8) = th] violates the choice pattern in response type sph when the
instrument switches from zc to z8.

2. 1[Ti(z8) = th] ≥ 1[Ti(ze) = th] violates the choice pattern in response type sph when the
instrument switches from ze to z8.

3. 1[Ti(ze) = th] ≥ 1[Ti(zc) = th] violates the choice pattern in response type sfc when the
instrument switches from zc to ze.

4. 1[Ti(zc) = tm] ≥ 1[Ti(z8) = tm] violates the choice pattern in response type sfc when the
instrument switches from z8 to zc.

5. 1[Ti(z8) = tm] ≤ 1[Ti(ze) = tm] violates the choice pattern in response type spm when the
instrument switches from z8 to ze.
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6. 1[Ti(ze) = tm] ≥ 1[Ti(zc) = tm] violates the choice pattern in response type spm when the
instrument switches from zc to ze.

7. 1[Ti(zc) = tl] ≥ 1[Ti(z8) = tl] violates the choice pattern in response type spl when the
instrument switches from z8 to zc.

8. 1[Ti(z8) = tl] ≥ 1[Ti(ze) = tl] violates the choice pattern in response type spm when the
instrument switches from ze to z8.

9. 1[Ti(ze) = tl] ≤ 1[Ti(zc) = tl] violates the choice pattern in response type spl when the
instrument switches from ze to zc.

A.9 Proof of Theorem T.4

Item (i) of the theorem states that the choice indicator Dt = 1[T = t] can be expressed as
the separable equation Dt = 1[Pt(Z) ≥ Ut] where Ut is an unobserved variables that is uniformity
distributed in [0, 1]. The proof consisting in constructing a variable Ut such that Dt = 1[Pt(Z) ≥ Ut]
w.p.1. and to show that the constructed variable has uniform distribution.

Remark 1.1 . The theorem describes the IV model using the Rubin-Holland causal model, which
employs the language of potential outcomes in (1)–(3) to define IV model. The main advantage
of using the Rubin-Holland causal model is its simplicity. However, this causal framework has a
major drawback. The language of potential outcomes severely limits the interpretation of the IV
model, and, in particular, the interpretation of variable Ut. Appendix D uses structural equation to
equivalently describe the IV model. I refer to Appendix D for the interpretation of the unobserved
variables in the IV model.

The first step to proving item (i) is to show the choice indicator Dt can be expressed as a
threshold crossing indicator. This fact stems from the triangular property of the MTO response
matrix, namely, each binary matrix Bt = 1[R = t]; t ∈ {th, tm, tl} can be written as a lower
triangular matrix as displayed in equations (35), (42), and (43) of Section 5.

Consider the case of low poverty neighborhoods tl as our leading example. The triangular
response matrix for tl in (35) is displayed bellow for our convenience:

Rl =


sal spl sfc spm sah sam spl

tl th th tm th tm th

tl tl tm tm th tm tm

tl tl tl tl th tm th

 zc
z8
ze

Let Btl ≡ 1[Rl = tl] be the binary matrix that takes 1 if the respective element in Rl is tl, that
is:

Btl ≡ 1[Rl = tl] =


sal spl sfc spm sah sam spl

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 1 0 0 0

 zc
z8
ze

It is useful to relabel the indexes of the z-values according to increasing values of row-sums and
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relabel the indexes of the response types according to decreasing values of the columns-sums:

Btl ≡


s1 s2 s3 s4 s5 s6 s7

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 1 0 0 0

 z1
z2
z3

(82)

Equation (8) enable us to relate propensity scores and response type probabilities by the following
equation:

P(T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]P(S = s). (83)

We can use the matrix version of equation (83) to relate propensity scores and response type
probabilities as following:

[ ]Ptl (z1)
Ptl (z2)
Ptl (z3)

=

s1 s2 s3 s4 s5 s6 s7[ ]
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 1 0 0 0

︸ ︷︷ ︸
Binary matrix Btl

= 1[Rl = tl]





P(S = s1)
P(S = s2)
P(S = s3)
P(S = s4)
P(S = s5)
P(S = s6)
P(S = s7)

. (84)

Equation (84) generates the following relationships between the relabeled propensity scores and
response type probabilities:

Ptl(z1) =
1∑

j=1

P(S = sj) (85)

Ptl(z2) =

2∑
j=1

P(S = sj) (86)

Ptl(z3) =
4∑

j=1

P(S = sj) (87)

The key property that arises from the triangular property of matrix (82) is that we can express each
of the elements of Btl in (82) as an indicator of an inequality between the propensity score and the
sum of the response type probabilities. To see this property, letBtl [zi, sj ]; (i, j) ∈ {1, 2, 3}×{1, ..., 7}
denotes the elements of matrix Btl . The matrix equation (84) renders the following properties of
these elements:

Btl [zi, sj ] = 1 ⇔ Pl(zi) ≥
j∑

j′=1

P(S = sj′), (88)

or Btl [zi, sj ] = 0 ⇔ Pl(zi) <

j∑
j′=1

P(S = sj′). (89)
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Note that Btl [zi, sj ] = 1[T = tl|Z = zi,S = sj ], thus, we can express the choice indicator as:

1[T = tl|Z = zi,S = sj ] = 1

Pl(zi) ≥
j∑

j′=1

P(S = sj′)

 for (i, j) ∈ {1, 2, 3} × {1, ..., 7}. (90)

Equation 90 shows that the choice indicator (right-hand side) can be expressed as a the indicator
of a separable inequality that compares the propensity score Pl(zi) with the sum of response type
probabilities.

There are several ways to construct a variable Utl ∼ Unif [0, 1] such that Dtl = 1[Pt(Z) ≥ Utl ].
For instance, let U1, ..., U7 be i.i.d. random variables uniformly distributed in [0, 1]. Let Utl be
defined as:

Utl =

7∑
j=1

1[S = sj ] ·

 j−1∑
j′=0

P (S = sj−1) + Uj · P (S = sj)

 , where P (S = s0) ≡ 0. (91)

Variable Utl has a uniform distribution in [
∑j−1

j′=0 P (S = sj′),
∑j

j′=0 P (S = sj′)] conditional on

S = sj . Unconditionally, variable Utl has a uniform distribution in [0, 1]. Let the indicator variable
be defined as:

D̃tl = 1[Ptl(Z) ≥ Utl ]. (92)

Note that: (
D̃tl |Z = zi,S = si

)
= 1[Ptl(zi) ≥ Utl,j ],

where Utl,j ∼ Unif

 j−1∑
j′=0

P (S = sj′),

j∑
j′=0

P (S = sj′)

 .

According to (88)–(89), we have that (D̃tl |Z = zi,S = sj) = Btl [zi, sj ] for all (i,j) ∈ {1, 2, 3} ×
{1, ..., 7}. Moreover, we have that Dtl ≡ 1[T = tl], thus we can combine all results into:

(Dtl |Z = zi,S = sj) = 1[T = tl|Z = zi,S = sj ] = Btl [zi, sj ] = (D̃tl |Z = zi,S = sj).

In particular, we have that:

Dtl = Dtl(Z,S) = (D̃tl |Z,S) = 1[Ptl(Z) ≥ Utl ].

As mentioned, the rationale for establishing that Dtl = 1[Ptl(Z) ≥ Utl ] holds stems from the
triangular property of the MTO matrix for choice tl. The variables Uth , Utm can be constructed in
the same fashion since the triangular property of the MTO matrix holds for th and tm.

To prove the item (ii) of the theorem, first note that the exogeneity condition (2), Z ⊥⊥
(Y (t), T (z)), implies that Z ⊥⊥ S, but Ut is a function of only S, which implies that Z ⊥⊥ (Ut, Y (t)),
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and thereby Z ⊥⊥ Y (t)|Ut, holds. Thus, we have that:

E(Y · 1[T = t]|Z = z) = E(Y (t) ·Dt|Z = z) (93)

= E(Y (t) · 1[Ptl(Z) ≥ Utl ]|Z = z) (94)

= E(Y (t) · 1[Ptl(z) ≥ Utl ]) (95)

=

∫ Ptl
(z)

0

E(Y (t)|Utl = u)du, (96)

where the second equality uses Dt = 1[Pt(Z) ≥ Utl ], the third equality is due to Z ⊥⊥ (Y (t), Ut),
and the fourth equality is due to Utl ∼ Unif [0, 1].

Let z, z′ ∈ supp(Z) such that Pt(z
′) > Pt(z). Equation (96) enable us to write:

E(Y Dt|Z = z′)− E(Y Dt|Z = z) = E(Y (t)1[Ptl(z
′) ≥ Utl ])− E(Y 1[Ptl(z) ≥ Utl ])

= E(Y (t) · (1[Ptl(z
′) ≥ Utl ]− 1[Ptl(z) ≥ Utl ]))

= E(Y (t) · (1[Ptl(z
′) ≥ Utl ≥ Ptl(z)]))

=

∫ Ptl
(z′)

Ptl
(z)

E(Y (t)|Ut = u)du

Therefore we have that:

E(Y Dt|Z = z′)− E(Y Dt|Z = z)

Pt(z′)− Pt(z)
=

∫ Pt(z
′)

Pt(z)
E(Y (t)|Ut = u)du

Pt(z′)− Pt(z)
.

B Defining Neighborhood Choices

The neighborhood choices are defined according to the eligibility criteria of MTO vouchers:

� Low poverty neighborhood (tl) are the neighborhoods whose poverty level is below 10% ac-
cording to the 1990 U.S. Census.

� High poverty neighborhood (th) are the housing projects targeted by the MTO experiment.

� Medium poverty neighborhood (tm) are the remaining neighborhoods.

Each choice refers to the neighborhood decision at the beginning of the intervention. Thus, each
neighborhood choice indicates the initial family decision of neighborhood relocation but also even-
tual subsequent moves made by the family.

Families using the vouchers were supposed to move from housing projects within six months
of the voucher assignment. However, this rule was not strictly enforced: 17% of the families that
used the Section 8 voucher and 36% of families that used the experimental voucher took more
than 6 months to move. Thus the neighborhood choice depends on the voucher utilization, the
neighborhood poverty level and also on the time that the family took to relocate.

It is useful to classify the families into three groups: stayers, compliers, and self-movers. Stayers
are families that had not moved from their original housing projects since the intervention onset
until the time of the interim evaluation in 2002. Compliers are families that use the experimental
or Section 8 vouchers to relocate. Self-movers are families that had moved at the time of the
interim evaluation without using the voucher. Table A.4 presents the distribution of these family
types across sites. Around 20% of families that receive vouchers and 30% of the control families
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stayed in their original dwellings by the time of the interim evaluation. Self-movers totals 36% of
experimental families and 24% of Section 8 families in 2002.

Table A.4: Relocation Rates by Site at the Time of the Interim Evaluation in 2002

Voucher All Sites Relocation All Sites Baltimore Boston Chicago Los Angeles New York
Assignment N % Decision N % N % N % N % N % N %

Compliers 818 47% 146 58% 168 46% 155 34% 167 67% 182 45%
Experimental 1729 41% Self-movers 618 36% 97 38% 149 41% 234 51% 53 21% 85 21%

Stayers 293 17% 9 4% 49 13% 71 15% 30 12% 134 33%

Compliers 716 59% 135 72% 129 48% 134 66% 130 77% 188 49%
Section 8 1209 28% Self-movers 276 23% 45 24% 86 32% 55 27% 25 15% 65 17%

Stayers 217 18% 7 4% 52 19% 13 6% 13 8% 132 34%

Control 1310 31% Self-movers 917 70% 174 88% 240 74% 189 81% 172 66% 142 48%
Stayers 393 30% 23 12% 86 26% 43 19% 88 34% 153 52%

Total 4248

This tables describe the relocation of families by voucher assignment and site in 2002. MTO families are classified
into three groups: (1) compliers – families that used the vouchers to relocate; (2) self-movers – families that had
moved without the voucher at the time of the interim evaluation in 2002; (3) stayers – families that had not moved
since intervention onset in 1994–1998 until the interim evaluation in 2002.

The neighborhood choices of stayers and compliers are easily characterized. The neighborhood
choice of families who stay in their original dwellings is th. The experimental voucher can only
be used to relocate to low poverty neighborhoods. Thus the neighborhood choice of experimental
families that use the voucher is tl. Families that decide to use the Section 8 voucher choose between
low (tl) or medium-poverty (tm) neighborhoods. This ambiguity is resolved by assessing the poverty
levels of the chosen neighborhoods.

The experimental voucher defines low-poverty neighborhoods as those whose poverty level is
below a soft target of 10%.64 In practice, 11% of neighborhoods classified as low-poverty were
slightly above the nominal threshold (first graph of Figure A.1). I employ a simple approach to
address for this fact. I use the poverty distribution of Section 8 compliers to estimate a thresh-
old that best conforms with the poverty distribution of low-poverty neighborhoods. Specifically,
I estimate the threshold that minimizes the Kolmogorov-Smirnov statistic between the poverty
distribution of Section 8 compliers and the poverty distribution of experimental compliers. The
empirical threshold is 11.67% (second graph of Figure A.1).

It remains to determine the neighborhood choice for the self-movers, which comprise all families
that have relocated between surveys. The goal is to identify families who decided to move by
the time of the onset of the intervention. To do so, I explore the available information on the
time spell from voucher assignment until the first relocation. I account for this fact using the
same procedure that yields the poverty threshold. I estimate the threshold the minimizes the
difference on the distribution on relocation time between compliers and self-movers. The first
graph of Figure A.2 presents the distribution of relocation time for compliers while the second graph
presents the Kolmogorov-Smirnov statistics for the difference on relocation time between compliers
and self-movers. The corrected thresholds for relocation time are 8.6 months for medium-poverty
neighborhoods and 10.6 months for low-poverty neighborhoods. The neighborhood choice of self-
movers that relocate before these thresholds is set at either low or medium-poverty neighborhoods.

64Using the 1990 US Census.
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Figure A.1: Poverty Densities and Threshold Investigation
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The first graph presents the poverty density of chosen neighborhoods for families who comply with the Experimental
and Section 8 vouchers. The second graph presents the Kolmogorov-Smirnov statistics (y-axis) between the poverty
distribution of experimental compliers and the poverty distribution of Section 8 compliers that is right-bounded by
a threshold (x-axis).

Figure A.2: Time to Relocate Densities and Threshold Investigation
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The first graph presents the density of the time to relocate into low and medium poverty neighborhoods since
voucher assignment for families who comply with the vouchers. Density estimates use the Gaussian Kernel with
optimal bandwidth. The second graph presents the Kolmogorov-Smirnov statistics (y-axis) between the distribution
time to relocate of voucher compliers and the distribution of time to relocate for self-movers that are right-bounded
by a threshold (x-axis).
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Figure A.3 summarizes the neighborhood decision of the MTO families by voucher assign-
ment. Nearly 85% the control families choose high-poverty neighborhoods, 10% choose medium
poverty neighborhoods and 3% choose low-poverty neighborhoods. Families that do not use the
voucher share a similar composition of neighborhood choices. Around 15% of families that use the
Section 8 voucher decide for low-poverty neighborhoods while 85% of Section 8 compliers choose
medium-poverty neighborhoods. Neighborhood choices are robust across variations of the assign-
ment procedure. For instance, we can generate alternative values for the neighborhood choices
by setting the poverty threshold to its nominal value of 10% and the relocation time to 6 months
generates. These values agree with the neighborhood choices described by the procedure above in
97% of the cases.
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C TOT parameter of a Simplified Intervention

Consider a simpler intervention than MTO, which randomly assigns families living in high poverty
neighborhoods to either a control group zc or an experimental group zc. The experimental group
receives a voucher that incentivizes families to move to low poverty neighborhoods, while the
control group receives no incentives. Families decide between two choices: remain in a high poverty
neighborhood th or move to a low poverty neighborhood tl.

Suppose that the investigators can prevent families from moving. Families assigned to the
control group remain in the high poverty area. Families assigned to the experimental voucher that
decide to not use the voucher do not move either. The only families that relocate are those assigned
to the experimental voucher that agree to use the voucher.

This model admits two latent family types. Compliers are families who intend to use the
experimental voucher in case they are assigned to it. Non-compliers are families that do not intend
to use the experimental voucher. Notationally, Ti(z) ∈ {th, tl} denotes the potential choice of family
i that is assigned to the group z ∈ {zc, ze} and Yi(t) denotes the potential outcome of family i when
the neighborhood choice is fixed at t ∈ {th, tl}.

The response vector Si = [Ti(zc), Ti(ze)]
′ lists the potential choices of a family i if it were

assigned to the control and experimental groups respectively. If family i is a complier, then Si =
[th, tl]

′, otherwise family i is a non-complier and its response vector is given by Si = [th, th]
′.

For notational simplicity, let sn = [th, th]
′ denote the potential choices for non-compliers and let

sc = [th, tl]
′ denote the potential choices for compliers.

IV assumptions apply, namely, Z ⊥⊥ (T (z), Y (t)) for all (z, t) ∈ {th, tl}×{zc, ze}. IV assumptions
imply that Z ⊥⊥ S. Otherwise stated, the IV randomization ensures that the share of family types in
the experimental and control groups is the same. Consequently, the voucher take-up rate identifies
the share of compliers, that is P (S = sc).

The intention-to-treat (ITT ) parameter is given by ITT = E(Y |Z = ze) − E(Y |Z = zc). It
identifies the causal effect of being offered the experimental voucher. It is useful to express the ITT
parameter as the weighted average of the voucher effects for compliers and non-compliers multiplied
by their respective shares:

ITT = ITTe(sn)P (S = snc) + ITT (sc)P (S = sc), (97)

ITT (sn) ≡ E(Y |Z = ze,S = sn)− E(Y |Z = zc,S = sn) = E(Y (th)− Y (th)|S = sn) = 0, (98)

ITT (sc) ≡ E(Y |Z = ze,S = sc)− E(Y |Z = zc,S = sc) = E(Y (tl)− Y (th)|S = sc), (99)

where ITT (sc), ITT (sn) denotes the the ITT parameter for families of type sc and sn respectively:
The voucher effect for non-compliers is given by ITT (sn) in (98), and it is zero as these families do
not relocate. The voucher effect for compliers is given by ITT (sc) in (99). Note that the compliers
always choose th if assigned to zc and choose tl if assigned to ze. Thus ITT (sc) gives the causal
effect of low versus high poverty neighborhoods on the outcome.

TOT in (6) is the ITT effect divided by the voucher take-up rate. In this setup, the TOT
identifies the causal effect of the low versus high poverty neighborhoods for compliers:

TOT =
ITT

P (S = sc)
(100)

=
ITT (sc)P (S = sc)

P (S = sc)
(101)

= E(Y (tl)− Y (th)|S = sc), (102)
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where the first equality is the definition of TOT, the second equality is due to (97)–(98). The third
equation is due to (99).

D How IV Controls for Unobserved Characteristics

The main paper uses the language of potential outcomes to examine the identification in MTO.
The primary advantage of the potential outcomes framework is its simplicity. The framework does
not employ structural equations nor explicitly display unobserved variables. Its simplicity comes
at a cost. It harms the interpretation of the causal model that generates the data. In particular,
it is difficult to understand that the identification of causal parameters hinges on controlling for
family unobserved characteristics. This section describes the causal model of MTO using structural
equations. It clarifies the causal concepts underlying causality and the identification of causal
parameters. See Heckman and Pinto (2022) for a recent discussion on causality, structural models
and the limitations of the potential outcome framework.

The observed variables in MTO are: (1) voucher assignment Z ∈ {zc, z8, ze}; (2) neighborhood
choice T ∈ {th, tm, tl}; (3) outcome Y ∈ R; and (4) baseline characteristics X ∈ R|x|. The MTO
model is characterized by the following system of causal relations:

Choice Equation : T = fT (Z,V ,X), (103)

Outcome Equation : Y = fY (T,V ,X, ϵ), (104)

Conditional Independence : Z ⊥⊥ V |X, (105)

where V denotes the vector of family unobserved characteristics and ϵ is an unobserved variable
satisfying (Z, T,X,V ) ⊥⊥ ϵ.65 V is a confounding random vector that generates selection bias by
causing both choice T and the outcome Y. Baseline variables X are family observed characteristics
that cause T and Y. The experiment generates two required properties for Z to be an instrument:
(104) implies that Z only affects Y through its impact on T (exclusion restriction); and (105)
implies that Z is statistically independent of unobserved characteristics V given baseline variables
X.

The potential (counterfactual) outcome of family i ∈ I placed in neighborhood t is given by
Yi(t) ≡ fY (t,Vi,Xi, ϵi). It is the hypothetical outcome that would occur if the neighborhood choice
of family i were exogenously set to t ∈ {th, tm, tl}. The potential choice of family i is given by
Ti(z) ≡ fT (z,Vi,Xi). It is the choice that family i would take if it were exogenously assigned
to voucher z ∈ {zc, z8, ze}. Conditional independence (105) implies the IV exogeneity condition(
Y (t), T (z)

)
⊥⊥ Z|X for (z, t) ∈ {zc, z8, ze} × {th, tm, tl}. Outcome Y and choice T can be written

in terms of potential variables as:

Y =
∑

t∈{tl,tm,th}

Dt · Y (t) = Y (T ), and T =
∑

z∈{zc,z8,ze}

Dz · T (z) = T (Z), (106)

where Dt = 1[T = t]; t ∈ {th, tm, tl} indicates neighborhood choices, Dz = 1[Z = z]; z ∈
{zc, z8, ze} indicates voucher assignment and 1[A] is the indicator function that takes value 1 if
event A is true and zero otherwise.

65Measurement error and misspecification are possible sources of the unobserved error term ϵ.
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The causal effect of living in a low versus high-poverty neighborhood for family i is defined
as Yi(tl) − Yi(th). It is the difference in the potential outcome of family i if it were to reside in
each of these two neighborhood types. If responses are heterogeneous, this individual effect is not
identified since we only observe the potential outcome corresponding to the neighborhood chosen
by the family. A mean neighborhood treatment effect is the expectation of individual effects, such
as Yi(tl)− Yi(th), for subsets of families i ∈ I. To gain intuition, it is useful to write the observed
outcome of families i ∈ I that choose tl or th as:

Yi = β0 + βiDtl,i + ϵi, (107)

where βi = Yi(tl)− Yi(th), β0 = E(Y (th)), ϵi = Yi(th)− E(Y (th)), and Dt,i ≡ 1[Ti = t] is the
choice indicator for a family i such that Ti ∈ {tl, th}.

Equation (107) is a random coefficient model where βi varies across i ∈ I.66 If Y (t) and T
were statistically independent, Y (t) ⊥⊥ T, then we could evaluate the average neighborhood effect
E(Y (th) − Y (th)) by least squares taking mean differences. Selection bias induces a correlation
between Y (t) and T via V . As a consequence, the regressor Dtl,i in (107) correlates with both the
error term ϵi = Yi(th)−E(Y (th)) and the random coefficient βi = Yi(tl)− Yi(th). Without further
assumptions, neither least squares nor two-stage least squares identifies E(Y (th)− Y (th)).

67

A popular identification strategy invokes a matching condition which assumes that T and Y (t)
are independent conditioned on X, Y (t) ⊥⊥ T |X. This assumption enables the analyst to identify
counterfactual outcomes by controlling for X : E(Y |T = t,X) = E(Y (t)|T = t,X) = E(Y (t)|X),
where the first equality is due to (106) and the second is due to Y (t) ⊥⊥ T |X. The average
neighborhood effect across all families in i ∈ I is obtained by integrating out X :

E(Y (tl)− Y (th)) =

∫
(E(Y |T = tl,X = x)− E(Y |T = th,X = x)) dFX(x), (108)

where FX(·) is the cumulative distribution function (CDF) of X.

A matching assumption is not valid if there is selection bias on unobservables that are not in
X. However, it is always true that Y (t) ⊥⊥ T |(X,V ) holds. The identification of causal effects
hinges on controlling forX as well as for the unobservables V . This paper presents a nonparametric
method to control for V . I suppress X henceforward to simplify notation. The analysis should be
understood as conditioned on X.

One identification strategy invokes a parametric model that uses Z to control for V . Examples
of such approach in the MTO literature are Aliprantis and Richter (2020); Chesher et al. (2020);
Galiani et al. (2015). This paper takes a different approach. I exploit the instrument Z and
the incentives in MTO to nonparametrically control for V . The approach does not rely on any
functional form assumptions, nor does it require intensive computational effort.

It is possible to control for V by partitioning families based on choice behavior described by
response types or principal strata, namely, the counterfactual choices that the family would take
across the instrumental values.68

Let the Response vector Si = [Ti(zc), Ti(z8), Ti(ze)]
′ be the neighborhood choices made by family

66Also called Switching Regression Model (Quandt, 1958, 1972).
67Later in this paper I present assumptions that enable the analyst to use a modified version of the two-stage least

square regression to identify counterfactual outcomes.
68The use of response types dates back to Balke and Pearl (1994) and Frangakis and Rubin (2002). See Pinto

(2016) or Heckman and Pinto (2018) for a discussion.
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i when assigned to each of the instrumental values zc, z8, ze. A response type consists of a vector of
choice values that S may take. For instance, family i that has response type Si = [th, tm, tl]

′ chooses
a high-poverty neighborhood when offered zc (Ti(zc) = th), a medium-poverty neighborhood when
offered z8 (Ti(z8) = tm), and a low-poverty neighborhood when offered ze (Ti(ze) = tl).

Choice T is determined by Z and S. Given a response type, choice T depends only on assignment
Z, which is independent of its potential outcome Y (t). Therefore Y (t) ⊥⊥ T |S holds. Intuitively, the
neighborhood choice within a group of families that share the same response type can be understood
as if it were generated by randomized controlled trial RCT where Z determines the neighborhood
assignment. If we knew all the families i ∈ I that have type Si = [th, tm, tl], we would be able to
identify the causal effect of low tl versus high th from:

E(Y |Z = ze,S = [th, tm, tl]
′)− E(Y |Z = zc,S = [th, tm, tl]

′) (109)

= E(Y |T = tl,S = [th, tm, tl]
′)− E(Y |T = th,S = [th, tm, tl]

′), due to response type (110)

= E(Y (tl)|T = tl,S = [th, tm, tl]
′)− E(Y (th)|T = th,S = [th, tm, tl]

′), due to (106) (111)

= E(Y (tl)− Y (th)|S = [th, tm, tl]), due to Y (t) ⊥⊥ T |S (112)

Response types control for unobserved characteristics V by generating a useful partition of its
support. Holding X fixed, the potential choice T (z) = fT (z,V ) depends only on V . The set of
unobserved characteristics corresponding to response type s = [th, tm, tl] is given by:

Vs = {v ∈ supp(V ) such that fT (zc,v) = th, fT (z8,v) = tm, fT (ze,v) = tl}.

Events S = s and V ∈ Vs are equivalent. Y (t) ⊥⊥ T |(S = s) implies that Y (t) ⊥⊥ T |(V ∈ Vs)
holds. Conditioning on S = s is equivalent to conditioning on the set of unobserved variables
V ∈ Vs that renders the choice T statistically independent of the counterfactual outcomes Y (t).69

As s ranges in supp(S), it spans the support of V as supp(V ) =
⋃

s∈supp(S) Vs.

Response types are not observed, but we can express observed outcomes as a mixture of potential
outcomes conditioned on response types as written in equation (8) of the main paper.

E Comparing MTO with Other Choice Models

This section investigate choice models that differ from the choice Model of MTO.

The monotonicity condition of Angrist and Imbens (1995) is widely known among empirical
economists. (Vytlacil, 2006) demonstrates that assuming the monotonicity condition of Angrist
and Imbens (1995) is equivalent to assume an ordered choice model with random thresholds. Thus,
I refer to the monotonicity condition of Angrist and Imbens (1995) as “ordered monotonicity” for
sake of clarity of exposition.

Section E.1 shows that the response matrix of MTO does not comply with the ordered mono-
tonicity condition. Section E.2 presents examples of incentives that justify assuming that the
ordered monotonicity condition holds. Section E.3 presents the identification analysis for a three-
choice model with a three-valued IV where the ordered monotonicity condition holds. Section E.4
examines the MTO model when the Normal Choice Assumption in Section (4.1) is violated. Sec-
tion E.5 investigates the case of misrepresented choice incentives. Section E.6 investigates the
three-choice model with a parallel design described in Kirkeboen, Leuven, and Mogstad (2016).

69S plays the role of a control function in Heckman and Robb (1985) and Powell (1994) as well as an unobserved
balancing score in Rosenbaum and Rubin (1983).
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E.1 Do MTO Incentives Justify an Ordered Choice Model?

A natural inquiry is whether it is possible to model neighborhood choices in MTO as an ordered
choice model. Viewing the treatment as ordered is appealing because it relates to the well-known
monotonicity condition of Angrist and Imbens (1995) described below:

For any z, z′ , Ti(z) ≤ Ti(z
′)∀ i or Ti(z) ≥ Ti(z

′)∀ i. (113)

in (113), Vytlacil (2006) demonstrates that the monotonicity condition (113) is equivalent to as-
suming an ordered choice model. For sake of clarity, condition (113) is termed ordered monotonicity
henceforward.

Ordered monotonicity (113) benefits from well-establish literature in policy evaluation. In
particular, Angrist and Imbens (1995) has shown that the standard 2SLS regression evaluates
an interpretable causal parameter under (113). Unfortunately, ordered monotonicity (113) is not
compatible with MTO incentives.

Ordered monotonicity (113) is equivalent to state that there exist a sequence of instrumental
variables z1, ..., zJ and such that Ti(z1) < ... < Ti(zJ) for all agents i ∈ I. If (113) were true for
MTO, we would be able to relabel the instrumental values and neighborhood choices of MTO, say
supp(Z) = {z1, z2, z3}, and T ∈ {1, 2, 3}, such that

Ti(z1) ≤ Ti(z2) ≤ Ti(z3) holds for all i ∈ I. (114)

Unfortunately, condition (114) does not hold regardless of how we label instrumental values and
neighborhood choices. To see this, let the instrumental values zc, z8, ze be relabeled as z1, z2, z3 and
the neighborhood choices zh, zm, zl as 1, 2, 3. In this notation, the MTO response matrix is given
by:

Relabeled MTO Response Matrix : R =

s1 s2 s3 s4 s5 s6 s7[ ]
1 2 3 1 1 2 1
1 2 3 2 3 2 2
1 2 3 3 3 3 1

Ti(z1)
Ti(z2)
Ti(z3)

(115)

The response types s1 until s6 are weakly increasing, which comply with the monotonicity condition
Ti(z1) ≤ Ti(z2) ≤ Ti(z3). Response type s7 however violates this condition as Ti(z2) > Ti(z3).
Switching the second and third rows of (115) would make s7 comply with the monotonicity criteria
(114), but s4 would violate it. It is easy to see that the monotonicity condition would not be
satisfied by relabeling the neighborhood choices either.

E.2 Which Incentives Justify Ordered Monotonicity?

The are several incentive schemes that justify the ordered monotonicity (114). Let the incentive
matrix L be the J ×K matrix that characterises the incentives induced by instrumental values in
Z ∈ {z1, ..., zJ}, toward choices in T ∈ {1, ...,K}. The matrix input L[zj , k] denotes the incentive for
choosing choice k ∈ {1, ...,K} when assigned to instrumental variable zj{z1, ..., zJ}. One incentive
scheme that generates the ordered choice models is the presence of increasing incentive increments,
that is:

L[zj+1, tk]−L[zj , tk] < L[zj+1, tk+1]−L[zj , tk+1] for j ∈ {1, ..., J − 1} and k ∈ {1, ...,K − 1}.
(116)
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Examples of such incentives for three-choice model and a three-valued instrument of MTO are:

L1 =

1 2 3[ ]0 0 0
0 1 2
0 2 4

z1

z2

z3

, L2 =

1 2 3[ ]1 2 3
1 4 9
1 8 27

z1

z2

z3

, or L3 =

1 2 3[ ]1 1 1
2 4 8
4 16 64

z1

z2

z3

(117)

The combination of WARP and Normal Choice criteria of Section 4 generates the following
choice restriction:

If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (118)

Choice Rule (118) is intuitive. It states that if an agent i chooses t instead of t′ under z, and z′

offers greater incentives towards t than t′, then agent i will not choose t′ under z′. Applying Choice
Rule (118) to any of the incentive matrices L1, L2 or L3 in (117) generates the following response
matrix:

MTO Response Matrix: R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10[ ]1 1 1 1 1 1 2 2 2 3
1 1 1 2 2 3 2 2 3 3
1 2 3 2 3 3 2 3 3 3

Ti(z1)
Ti(z2)
Ti(z3)

(119)

Response matrix (119) contains all the admissible response types that satisfy the monotonicity
condition Ti(z1) ≤ Ti(z2) ≤ Ti(z3). Indeed, the choices in each of the response types of (119) are
weakly increasing. Moreover, there is no response type other than those in (119) that satisfy the
ordered monotonicity (114).

E.3 What can Identified by Assuming Ordered Monotonicity?

As mentioned, Response matrix (119) is obtained by assuming the monotonicity assumption (114)
of Angrist and Imbens (1995) in the case of a three choice model with a three-valued instrument.
The response matrix has 10 response types comprising of 18 counterfactual outcomes condition on
response types. For instance, there are six response types that take treatment value the treatment
T = 1, namely, s1, s2, s3, s4, s5 and s6. There are also six response types that take treatment
value the treatment T = 2 : s2, s4, s5, s7, s8 and s9. Finally, there are six response types that take
treatment value the treatment T = 3 : s3, s5, s6, s8, s9 and s10.

Equation (34) provides the necessary and sufficient criteria to examine the identification of
counterfactual outcomes. The criteria can also be use to examine the identification of response
type probabilities (by setting the outcome to one). The application of the criteria to the response
matrix (119) enables the identification of the following causal parameters:
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1. The following response type probabilities are identified:

P(S = s1),P(S = s10),P(S ∈ {s2, s3}),P(S ∈ {s6, s9}),
P(S ∈ {s2, s4, s7}),P(S ∈ {s3, s5, s8}), and P(S ∈ {s4, s5, s6}).

Note that the probabilities P(S ∈ {s7, s8, s9}) and P(S ∈ {s4, s5, s7, s8}) can be obtained
as a liner combination of the identified probabilities above.

2. The following counterfactual outcome expectations are identified:

E(Y (1)|S = s1), E(Y (1)|S ∈ {s2, s3}), and E(Y (1)|S ∈ {s4, s5, s6})
E(Y (2)|S ∈ {s2, s4, s7}), E(Y (2)|S ∈ {s7, s8, s9}), and E(Y (2)|S ∈ {s4, s5, s7, s8})
E(Y (3)|S = s10), E(Y (3)|S ∈ {s6, s9}), and E(Y (3)|S ∈ {s3, s5, s8}).

Note that there are only two response type probabilities that are point-identified: P(S = s1),
and P(S = s10). Moreover, only two out of the 18 counterfactual outcomes listed above are point-
identified: E(Y (1)|S = s1), and E(Y (3)|S = s10). The number of identified parameters for MTO
are sharply different. The MTO response matrix in (115) has seven response types, all response type
probabilities are point-identified, and six out of 12 counterfactual outcomes are point-identified.

E.4 Violating the Normal Choice Assumption

Consider a family i chooses low-poverty neighborhood tl under control, that is Ti(zc) = tl. According
to WARP, family i will also choose low-poverty neighborhood tl under the experimental voucher,
namely, Ti(ze) = tl. Suppose this family chooses medium-poverty neighborhood tm under z8. This
behavior is denoted by the following response type, s∗ = [tl, tm, tl]

′, which violates the normal
choice assumption.

The behavior is unlikely because if the family chooses low=poverty neighborhood with no in-
centives, then their neighborhood choice is likely to remain the same when incentives to choose
low-poverty neighborhood are offered. Nevertheless, it is informative to investigate the identifica-
tion of causal parameters when including the response type s∗ to the response matrix of MTO. The
response matrix that includes the response type s∗ is displayed below:

R =

sah sam sal sfc spl spm sph s∗[ ]th tm tl th th tm th tl
th tm tl tm tl tm tm tm
th tm tl tl tl tl th tl

Ti(zc)
Ti(z8)
Ti(ze)

(120)

Equation (34) provides the necessary and sufficient criteria to examine the identification of coun-
terfactual outcomes. As mentioned, the criteria can also be use to examine the identification of
response type probabilities by setting the outcome to one. The application of the criteria to the
response matrix (120) enables to point-identify the following response type probabilities:

P (S = sah), P (S = sam), P (S = spm), and P (S = sph)

The following response type probabilities are partially identified:

P (S ∈ {sal, spl}), P (S ∈ {sal, s∗}), P (S ∈ {sfc, spl}), and P (S ∈ {sfc, s∗}).
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The response type probability P(S ∈ {sal, s∗}) is identified by: P(S ∈ {sal, s∗}) = P(S =
sal) + P(S = s∗) = P (T = tl|Z = zc). The propensity score P (T = tl|Z = zc) which is about 3%.
Thus the families corresponding to low-poverty always-takes sal and the response type s∗ combined
account for only 3% of the sample.

It is expected that the share of sal-type families to be bigger than the share of s∗-type families.
Response types sal and s

∗ share some similarities with the response types sah = [th, th, th]
′ and

sph = [th, tm, th]
′. Note that sph deviates from the high-poverty always-takers by switching the

neighborhood choice under z8 from th to tm. This deviation is economically justifiable since z8 does
not incentivizes th, but does for tm. Figure 4 shows that the share of families corresponding to sph
is less than a third of the share corresponding to sah.

Note that the response type s∗ is a deviation from an always-takers in high-poverty by switching
the neighborhood choice under z8 from tl to tm. In this case, there are less economic incentives to
do so since z8 incenivizes tl. A parallel argument suggests that the response type s∗ should be less
than a third of the share of sah. In this case, the share of s∗ is likely to be less 0.75% of the data
and is not of primary concern in the empirical evaluation. On the other hand, the counterfactuals
for the full-compliers are partially identified. Addressing the problem of partially identification
is primary for the evaluation of the intervention. Appendix G.1 provides bounds for the partially
identified counterfactuals while Section 5.3 provides a solution to disentangle the partially identified
counterfactuals.

E.5 Misrepresented Choice Incentives

Some families assigned to the experimental group receive counseling that motivated them to move
away from high-poverty neighborhoods, regardless of whether the new neighborhood was located
in a low- or medium-poverty region. This means that the experimental voucher provides two
types of incentives. The primary incentive is the rent-subsidy towards low-poverty neighborhoods.
However, for same families, the voucher also provides some weak incentives towards medium-poverty
neighborhoods. This feature is modeled by the following incentive matrix:

New Incentive Matrix L =

th tm tl[ ]0 0 0
0 1 1
0 0.5 1

zc
z8
ze

(121)

The matrix states that the experimental provides full incentives towards tl and partial incentives
towards tm. The values of 0.5 is not essential since the matrix is ordinal. Any value in (0, 1)
represents equivalent incentives and generate the same response matrix. Applying the revealed
preference analysis of Section 4 to the incentive matrix (121) generates the following response
matrix:

R =

sah sam sal sfc spl spm sph s∗[ ]th tm tl th th tm th th
th tm tl tm tl tm tm tm
th tm tl tl tl tl th tm

Ti(zc)
Ti(z8)
Ti(ze)

(122)

The response matrix above has eight response types. The first seven response types are identical
to those of the response matrix of MTO in the main paper. The additional response type is
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s∗ = [th, tm, tm]′.

As mentioned, equation (34) provides the necessary and sufficient criteria to examine the iden-
tification of counterfactual outcomes. The criteria can also be use to examine the identification of
response type probabilities by setting the outcome to one. The application of the criteria to the
response matrix (120) enables to point-identify the following response type probabilities:

P (S = sah), P (S = sal), P (S = spl), and P (S = sph).

The identification of these probabilities are the same as the equations that identify the response
type probabilities in the response matrix with seven response types. Thus, these estimates remain
the same regardless if the true response matrix contains or do not contain s∗}.

The following response type probabilities are partially identified:

P (S ∈ {sam, spm}), P (S ∈ {sam, s∗}), P (S ∈ {sfc, spm}), and P (S ∈ {sfc, s∗}).

The response type probability P (S ∈ {sam, s∗}) is identified by: P(S ∈ {sam, s∗}) = P(S =
sam) + P(S = s∗) = P (T = tm|Z = ze). The estimate of the propensity score P (T = tm|Z = ze)
is about 4.5%. Thus the response matrix (122) is correct, the families corresponding to medium-
poverty always-takes sam and the response type s∗ combined account for only 4.5% of the sample.

The response type probability for the low-poverty always takers is 3%, and since medium-poverty
neighborhoods are more diverse and distributed over a larger area than the low-poverty ones, it
is safe to assume that the response type probability for the medium-poverty always takers sam is
greater than the probability for sah. Therefore, it is safe to assume that the upper bound of the
probability of the response type s∗ is about 1.5% of the total sample. This analysis considers that
all the families assigned to the experimental voucher got life-counseling training sections which
encouraged them to leave high-poverty neighborhoods. However, only less than a third of the
experimental voucher recipients had the advantage of this training (Feins et al., 1997). This implies
that a likely value for the upper bound for the probability of the response type s∗ = [th, tm, tm]′ is
approximately 0.5% of the total sample.

E.6 The Three-choice Model with a Parallel Design

This section considers a three-valued treatment, T ∈ {t0, t1, t2}, and a three-valued instrument
Z ∈ {z0, z1, z2} where z1 incentivizes t1, z2 incentivizes t2, and z0 is the baseline IV-value that
offers no incentives. The model is consistent with a three-arm randomized trial design in which
z1, z2 correspond to the intended treatment t1, t2 and z0 stands for the control group. This is
experiment is an example of the so called parallel design in the literature of randomized controlled
trials and has been examined by Kirkeboen, Leuven, and Mogstad (2016). Choice incentives are
characterized by the following incentive matrix:

L =

t0 t1 t2[ ]0 0 0
0 1 0
0 0 1

z0
z1
z2

(123)

The incentive matrix (123) differs from the MTO incentive matrix (13) as z1 incentivizes a
single choice t1, while the respective IV value in MTO, z8, incentivizes two choices: tm and tl.
MTO incentives justify tree monotonicity conditions (10)–(12), the incentive matrix (123) justifies
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only two:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1] (124)

1[Ti(z0) = t2] ≤ 1[Ti(z2) = t2]. (125)

Monotonicity condition (124) states that a change in the instrument from z0 to z1 induces agents to
shift their choice towards t1 while (125) states that a change from z0 to z2 induces agents towards
t2. Panel B of Table (A.5) shows that monotonicity conditions (124)–(125) eliminate 12 out of the
27 possible response types.

The remaining 15 response types are displayed in response matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15[ ]t0 t0 t0 t0 t0 t0 t0 t0 t0 t2 t1 t1 t2 t2 t2
t0 t0 t0 t1 t1 t1 t2 t2 t2 t2 t1 t1 t0 t1 t2
t0 t1 t2 t0 t1 t2 t0 t1 t2 t0 t1 t2 t2 t2 t2

Ti(z0)
Ti(z1)
Ti(z2)

(126)

The elimination of monotonicity conditions (124)–(125) are not sufficient to point-identify a sin-
gle counterfactual outcomes or a single response type probabilities. Equation (34) provides the
necessary and sufficient criteria to examine the identification of counterfactual outcomes. The ap-
plication of the criteria to the response matrix above enables to identify the following counterfactual
outcomes:

E(Y (t1)|S ∈ {s1, s2, s3, s4, s5, s6, s7, s8, s9}), E(Y (t1)|S ∈ {s1, s2, s3, s13}), E(Y (t1)|S ∈ {s1, s4, s7, s10}),
E(Y (t2)|S ∈ {s11, s12}), E(Y (t2)|S ∈ {s4, s5, s6, s14}), E(Y (t2)|S ∈ {s2, s5, s11}),
E(Y (t3)|S ∈ {s10, s13, s14, s15}), E(Y (t3)|S ∈ {s7, s8, s9, s10, s15}), E(Y (t3)|S ∈ {s3, s6, s9, s12, s13, s14, s15}).

Revealed Preference Analysis

Revealed preference analysis is more effective in eliminating response types than monotonicity
conditions (124)–(125). Table A.6 applies the WARP choice rule in P.1 to the incentive ma-
trix (123). There are 22 binding restrictions. Table A.7 summarise these 22 choice restrictions
of Table A.6 into the five restrictions. The remaining restrictions do not eliminate any additional
response types.

The WARP restriction in P.1 translates the incentive matrix 30 into the five choice restrictions:

1 Ti(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
2 Ti(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
3 Ti(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2

4 Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
5 Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1

The first restriction consider an agent that chooses t0 under z0. This mean that t0 is revealed
preferred to t1 and t2 when no incentives are available. The IV value z1 offers no incentives towards
t2, hence t2 is not chosen under z1. In same token, z2 does not incentivize t1 and therefore t1 is not
chosen. Panel C of Table (A.5) shows that these five restrictions eliminate 19 out of the 27 possible
response types. The eight response types that survive the elimination process are displayed in the
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response matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8[ ]
t1 t1 t0 t0 t2 t0 t0 t2
t1 t1 t1 t1 t1 t0 t0 t2
t1 t2 t0 t2 t2 t0 t2 t2

Ti(z0)
Ti(z1)
Ti(z2)

The main paper shows that response matrix above satisfies the monotonicity condition of Angrist
and Imbens (1995).
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Table A.6: Choice Restrictions Due to WARP

Revealed Incentive Choice

# Choice Inequalities Statement

Ti(z) = t L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] T (z′) ̸= t′

1 Ti(z0) = t0, L[z2, t1]−L[z0, t1] = 0 ≤ 0 ≤ 0 = L[z2, t0]−L[z0, t0] Ti(z2) ̸= t1
2 Ti(z0) = t0, L[z1, t2]−L[z0, t2] = 0 ≤ 0 ≤ 0 = L[z1, t0]−L[z0, t0] Ti(z1) ̸= t2

3 Ti(z0) = t1, L[z1, t0]−L[z0, t0] = 0 ≤ 0 ≤ 1 = L[z1, t1]−L[z0, t1] Ti(z1) ̸= t0
4 Ti(z0) = t1, L[z2, t0]−L[z0, t0] = 0 ≤ 0 ≤ 0 = L[z2, t1]−L[z0, t1] Ti(z2) ̸= t0
5 Ti(z0) = t1, L[z1, t2]−L[z0, t2] = 0 ≤ 0 ≤ 1 = L[z1, t1]−L[z0, t1] Ti(z1) ̸= t2

6 Ti(z0) = t2, L[z1, t0]−L[z0, t0] = 0 ≤ 0 ≤ 0 = L[z1, t2]−L[z0, t2] Ti(z1) ̸= t0
7 Ti(z0) = t2, L[z2, t0]−L[z0, t0] = 0 ≤ 0 ≤ 1 = L[z2, t2]−L[z0, t2] Ti(z2) ̸= t0
8 Ti(z0) = t2, L[z2, t1]−L[z0, t1] = 0 ≤ 0 ≤ 1 = L[z2, t2]−L[z0, t2] Ti(z2) ̸= t1

9 Ti(z1) = t0, L[z0, t1]−L[z1, t1] = −1 ≤ 0 ≤ 0 = L[z0, t0]−L[z1, t0] Ti(z0) ̸= t1
10 Ti(z1) = t0, L[z2, t1]−L[z1, t1] = −1 ≤ 0 ≤ 0 = L[z2, t0]−L[z1, t0] Ti(z2) ̸= t1
11 Ti(z1) = t0, L[z0, t2]−L[z1, t2] = 0 ≤ 0 ≤ 0 = L[z0, t0]−L[z1, t0] Ti(z0) ̸= t2

12 Ti(z1) = t2, L[z0, t0]−L[z1, t0] = 0 ≤ 0 ≤ 0 = L[z0, t2]−L[z1, t2] Ti(z0) ̸= t0
13 Ti(z1) = t2, L[z2, t0]−L[z1, t0] = 0 ≤ 0 ≤ 1 = L[z2, t2]−L[z1, t2] Ti(z2) ̸= t0
14 Ti(z1) = t2, L[z0, t1]−L[z1, t1] = −1 ≤ 0 ≤ 0 = L[z0, t2]−L[z1, t2] Ti(z0) ̸= t1
15 Ti(z1) = t2, L[z2, t1]−L[z1, t1] = −1 ≤ 0 ≤ 1 = L[z2, t2]−L[z1, t2] Ti(z2) ̸= t1

16 Ti(z2) = t0, L[z0, t1]−L[z2, t1] = 0 ≤ 0 ≤ 0 = L[z0, t0]−L[z2, t0] Ti(z0) ̸= t1
17 Ti(z2) = t0, L[z0, t2]−L[z2, t2] = −1 ≤ 0 ≤ 0 = L[z0, t0]−L[z2, t0] Ti(z0) ̸= t2
18 Ti(z2) = t0, L[z1, t2]−L[z2, t2] = −1 ≤ 0 ≤ 0 = L[z1, t0]−L[z2, t0] Ti(z1) ̸= t2

19 Ti(z2) = t1, L[z0, t0]−L[z2, t0] = 0 ≤ 0 ≤ 0 = L[z0, t1]−L[z2, t1] Ti(z0) ̸= t0
20 Ti(z2) = t1, L[z1, t0]−L[z2, t0] = 0 ≤ 0 ≤ 1 = L[z1, t1]−L[z2, t1] Ti(z1) ̸= t0
21 Ti(z2) = t1, L[z0, t2]−L[z2, t2] = −1 ≤ 0 ≤ 0 = L[z0, t1]−L[z2, t1] Ti(z0) ̸= t2
22 Ti(z2) = t1, L[z1, t2]−L[z2, t2] = −1 ≤ 0 ≤ 1 = L[z1, t1]−L[z2, t1] Ti(z1) ̸= t2

This table displays the binding choice restrictions generated by the WARP choice rule (Lemma L.1) described below:

If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′.

when applied to the MTO incentive matrix below:

Incentive Matrix L =

t0 t1 t2[ ]
0 0 0
0 1 0
0 0 1

z0
z1
z2

Table A.7: Summary of Choice Restrictions generated by applying WARP to the Parallel Design
Model in Table A.6

# Choice Restrictions

1,2 Ti(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
3,4,5 Ti(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
6,7,8 Ti(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2

12,13,14,15 Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
19,20,21,22 Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1
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F Exploring the Properties of the Response Matrix

The response matrix summarizes the necessary and sufficient information to investigate the non-
parametric identification of response type probabilities and counterfactual outcomes. This section
discusses three topics regarding the usage of the response matrix. Section F.1 clarifies how the
response matrix enables us to map counterfactuals and observed data. Section F.2 discusses the
identification of counterfactual outcomes. The section provides closed-form solutions for each iden-
tified counterfactual. Section F.3 explains how to estimate the identified counterfactual outcomes
using stands 2SLS regressions.

F.1 Mapping Counterfactual outcomes with Observed Data

The matrix determines a mapping between observed choices and latent response types. For instance,
the first row of the response matrix (29) lists the choices for control zc. Families that choose tl under
zc can only be low-poverty always-takers sal. Families that choose tm under zc are a mixture of
sal and sal, while those who choose tl under zc can be of four types: sah, sam, sfc, spl or , sph.
Figure A.4 displays the mapping generated by the response matrix (29). The identification of
causal parameters consists of disentangling this mapping.

Figure A.4: From Observed Vouchers and Choices to Unobserved Response types
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This figure describes how voucher assignments and neighborhood choices map into the MTO response types. There are three
possible voucher assignments: Control (zc), Section 8 (z8), or Experimental (ze). There are three neighborhood choices: high-
poverty neighborhood (th), medium-poverty neighborhood (tm) or low-poverty neighborhood (tl). The combination of voucher
assignment and neighborhood choice generate nine possibilities. There are seven response types according to the response
matrix R in (29). These response types are denoted by sah, sam, sal, sfc, sph, spm, spl. The mapping between the voucher
assignments and neighborhood choices into response types is represented by connecting lines. Solid lines denote the choice of
high-poverty neighborhood. Dotted lines denote the choice of medium-poverty neighborhood. Dashed lines denote the choice
of low-poverty neighborhood. Bold lines refer to the most frequent neighborhood choice for each voucher assignment.
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F.2 Interpreting Identification Results

Equation (8) is central to the identification analysis. It shows that the indicator 1[T = t|S = s, Z =
z] connects observed data, i.e., the expectation of the outcome multiplied by the choice indicator,
with the unobserved parameters we seek to identify, i.e. potential outcomes E(Y (t)|S = s) and
response type probabilities P(S = s). The identification of counterfactual parameters consists of
expressing the unobserved variables in the right-hand side of (8) in terms of the observed variables
of the left-hand side. This problem is best examined by expressing equation (8) in matrix form:

QZ(t)⊙ PZ(t) = Bt ·
(
QS(t)⊙ PS

)
; t ∈ {th, tm, tl}, (127)

where PZ(t) = [P(T = t|Z = zc),P(T = t|Z = z8),P(T = t|Z = ze)]
′
,

QZ(t) = [E(Y |T = t, Z = zc),E(Y |T = t, Z = z8),E(Y |T = t, Z = ze)]
′
,

PS = [P(S = sah),P(S = sam),P(S = sal),P(S = sfc),P(S = spl),P(S = spm),P(S = sph)]
′
,

QS(t) = [E(Y (t)|S = sah), ...,E(Y (t)|S = sph)]
′
,

Bt = 1[R = t]; t ∈ {tl, tm, th}.

PZ(t) denotes the observed vector of propensity scores. QZ(t) denotes the observed vector of
conditional outcomes. PS is the 7×1 vector of response type probabilities. QS(t) is the unobserved
vector of counterfactual outcome means. Bt = 1[R = t] denotes the 3 × 7 binary matrix that
indicates which elements in R are equal to t ∈ {th, tm, tl} and ⊙ denotes the Hadamard product
(element-wise multiplication).

The the binary matrices Bt = 1[R = t] for tl, tm, and th are displayed in equations (129),(130)
and (131) respectively. It is useful to decompose each binary matrix Bt into Bt = Ct ·At, where
Ct is the array the non-zero columns of Bt and At is a mapping between the vectors in Ct and Bt.
Specifically, the response matrix R is decomposed as:

R ≡
∑

t∈supp(T )

t ·Bt =
∑

t∈supp(T )

t ·CtAt, (128)

where Bt,Ct,At for t ∈ {th, tm, th} are given by:

Bth =

sah sam sal sfc spl spm sph[ ]1 0 0 1 1 0 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1

=

sfc, spl sph sah[ ]1 1 1
0 0 1
0 1 1

︸ ︷︷ ︸
Cth

·

sah sam sal sfc spl spm sph[ ]0 0 0 1 1 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

︸ ︷︷ ︸
Ath

(129)

Btm =

sah sam sal sfc spl spm sph[ ]0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 0 0 0

=

sfc, sph spm sam[ ]0 1 1
1 1 1
0 0 1

︸ ︷︷ ︸
Ctm

·

sah sam sal sfc spl spm sph[ ]0 0 0 1 0 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0

︸ ︷︷ ︸
Atm

(130)
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Btl =

sah sam sal sfc spl spm sph[ ]0 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0

=

sfc, spm spl sal[ ]0 0 1
0 1 1
1 1 1

︸ ︷︷ ︸
Ctl

·

sah sam sal sfc spl spm sph[ ]0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0

︸ ︷︷ ︸
Atl

(131)

Matrices Ct and At are used to generate a closed-form solution for the nonparametric identifi-
cation of counterfactual outcomes. The main paper shows that for each neighborhood choice, we
can reorder the columns and rows of the response matrix R to generate a lower-triangular matrix
(see equations (35) and (42)). This triangular property means that for each t we have that:

for anyz, z′ ∈ supp(Z), we have that Bt[z, s] ≤ Bt[z
′, s]∀ s or Bt[z, s] ≥ Bt[z

′, s]∀ s. (132)

Equation (132) is equivalent to state that there exists a sequence of of IV-values z
(t)
1 , ...z

(t)
N of the

values in supp(Z) ≡ {z1, ..., zN} such that:

Bt[z
(t)
k , s] ≤ Bt[z

(t)
k+1, s] ∀ s ∈ supp(S); k = 1, .., N − 1. (133)

This triangular property implies that matrices Ct in the decompositions (129)–(131) are of full
row-rank. We can then use the generalized solution of linear equations in Magnus and Neudecker
(1999) to identify counterfactual outcomes the following equation:(

At

(
QS(t)⊙ PS

)
÷
(
AtPS

)
=

(
(C ′

tCt)
−1C ′

t

(
QZ(t)⊙ PZ(t)

)
÷
((

(C ′
tCt)

−1C ′
tPZ(t)

)
(134)

where ÷ denotes element-wise division,70 and At stems from the decomposition Bt = CtAt as in
(129)–(131) Moreover, in the case where Ct is invertible, equation (134) can be further simplified
as: (

At

(
QS(t)⊙ PS

)
÷
(
AtPS

)
︸ ︷︷ ︸

Identified Counterfactual Outcomes

=
(
C−1

t

(
QZ(t)⊙ PZ(t)

)
÷
((
C−1

t PZ(t)
)

︸ ︷︷ ︸
Identification Formulas

(135)

The right-hand side of (135) summarizes all identified counterfactual outcomes. The left-hand
side of (135) generates identification formulas. Equations (136)–(138) exemplify the left-hand side
of (135) for th.

Ath

(
QS(th)⊙ PS

)
=

[
E(Y (th)|S = sfc)P(S = sfc) + E(Y (th)|S = spl)P(S = spl)

E(Y (th)|S = sph)P(S = sph)
E(Y (th)|S = sah)P(S = sah)

]
(136)

AthPS =

[
P(S = sfc) + P(S = spl)

P(S = sph)
P(S = sah)

]
(137)

∴
(
Ath

(
QS(th)⊙ PS

))
÷
(
AthPS

)
=

[
E(Y (th)|S ∈ sfc, spl)
E(Y (th)|S = sph)
E(Y (th)|S = sah)

]
(138)

70Let A,B be two vectors of same length, then A÷B ≡ diag(B)−1A, where diag(·) is the operator that transform
a vector into a diagonal matrix.
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The right-hand side of (135) for th employs the matrix C−1
th

displayed in equation (139):

Cth =

[
1 1 1
0 0 1
0 1 1

]
⇒ C−1

th
=

[
1 0 −1
0 −1 1
0 1 0

]
, (139)

Equations (140) and (141) exemplify the numerator and the denominators of the right-hand side
of (135) for th :

C−1
th
QZ(th)⊙ PZ(th) =

[
E(Y |T = th, Z = zc)P(T = th|Z = zc)− E(Y |T = th, Z = ze)P(T = th|Z = ze)
E(Y |T = th, Z = ze)P(T = th|Z = ze)− E(Y |T = th, Z = z8)P(T = th|Z = z8)

E(Y |T = th, Z = z8)P(T = th|Z = z8)

]
,

=

[
E(Y ·Dth |Z = zc)− E(Y · 1[T = th]|Z = ze)
E(Y ·Dth |Z = ze)− E(Y · 1[T = th]|Z = z8)

E(Y ·Dth |Z = z8)

]
, (140)

and C−1
th
PZ(th) =

[
P(T = th|Z = zc)− P(T = th|Z = ze)
P(T = th|Z = ze)− P(T = th|Z = z8)

P(T = th|Z = z8)

]
, (141)

The final equation for th is presented in (142). The left-hand side of (142) lists all the identified
counterfactual outcome means of Y (th). The right-hand side provides the identification formulas
that can be evaluated from observed data.

∴

 E(Y (th)|S ∈ sfc, spl)
E(Y (th)|S = sph)
E(Y (th)|S = sah)


︸ ︷︷ ︸

Ath

(
QS(th) ⊙ PS

)
÷ Ath

PS

=


E(Y ·Dth

|Z=zc)−E(Y ·Dth
|Z=ze)

P(T=th|Z=zc)−P(T=th|Z=ze)
E(Y ·Dth

|Z=ze)−E(Y ·Dth
|Z=z8)

P(T=th|Z=ze)−P(T=th|Z=z8)
E(Y ·Dth

|Z=z8)

P(T=th|Z=z8)

 .

︸ ︷︷ ︸(
C−1

th
QZ(th) ⊙ PZ(th)

)
÷ C−1

th
PZ(th)

(142)

Equations (143)–(144) arise from applying formula (135) to tm and tl : E(Y (tm)|S ∈ {sfc, sph})
E(Y (tm)|S = spm)
E(Y (tm)|S = sam)


︸ ︷︷ ︸

Atm

(
QS(tm) ⊙ PS

)
÷ AtmPS

=


E(Y ·Dtm |Z=z8)−E(Y ·Dtm |Z=zc)
P(T=tm|Z=z8)−P(T=tm|Z=zc)

E(Y ·Dtm |Z=zc)−E(Y ·Dtm |Z=ze)
P(T=tm|Z=zc)−P(T=tm|Z=ze)

E(Y ·Dtm |Z=ze)
P(T=tm|Z=ze)

 ,

︸ ︷︷ ︸
C−1

tm

(
QZ(tm) ⊙ PZ(tm)

)
÷ C−1

tm
PZ(tm)

(143)

 E(Y (tl)|S ∈ {sfc, spm})
E(Y (tl)|S = spl)
E(Y (tl)|S = sal)


︸ ︷︷ ︸

Atl

(
QS(tl) ⊙ PS

)
÷ Atl

PS

=


E(Y ·Dtl

|Z=ze)−E(Y ·Dtl
|Z=z8)

P(T=tl|Z=ze)−P(T=tl|Z=z8)
E(Y ·Dtl

|Z=z8)−E(Y ·Dtl
|Z=zc)

P(T=tl|Z=z8)−P(T=tl|Z=zc)
E(Y ·Dtl

|Z=zc)

P(T=tl|Z=zc)

 .

︸ ︷︷ ︸
C−1

tl

(
QZ(tl) ⊙ PZ(tl)

)
÷ C−1

tl
PZ(tl)

(144)

Response type probabilities can be identified by equationsAtPS = C−1
th
PZ(th) for t = th, tl, tm :

∴

 P(S ∈ sfc, spl)
P(S = sph)
P(S = sah)


︸ ︷︷ ︸

Ath
PS

=

 P(T = th|Z = zc)− P(T = th|Z = ze)
P(T = th|Z = ze)− P(T = th|Z = z8)

P(T = th|Z = z8)

 .

︸ ︷︷ ︸
C−1

th
PZ(th)

(145)
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 P(S ∈ {sfc, sph})
P(S = spm)
P(S = sam)


︸ ︷︷ ︸

AtmPS

=

 P(T = tm|Z = z8)− P(T = tm|Z = zc)
P(T = tm|Z = zc)− P(T = tm|Z = ze)

P(T = tm|Z = ze)

 ,

︸ ︷︷ ︸
C−1

tm
PZ(tm)

(146)

 P(S ∈ {sfc, spm})
P(S = spl)
P(S = sal)


︸ ︷︷ ︸

Atl
PS

=

 P(T = tl|Z = ze)− P(T = tl|Z = z8)
P(T = tl|Z = z8)− P(T = tl|Z = zc)

P(T = tl|Z = zc)

 .

︸ ︷︷ ︸
C−1

tl
PZ(tl)

(147)

F.3 Relation to Previous Literature on Binary Treatments

We can connect the triangular property of the response matrices in (35), (42), and (43), to the IV
literature of binary choice models. Similar to Imbens and Angrist (1994), counterfactual outcomes
can be estimated by Two-Stage Least Squares (2SLS). The identification of E(Y (tl)|S = spl) in
(39) depends on z8 and zc. According to equation (144), the counterfactual is identified by the
following equations:

E(Y (tl)|S = spl) =
E(Y ·Dtl |Z = z8)− E(Y ·Dtl |Z = zc)

P(T = tl|Z = z8)− P(T = tl|Z = zc)
.

The equation is closely related with the LATE equation of Imbens and Angrist (1994). It can be
estimated by the 2SLS (148)–(149) that regresses the choice indicator Dtl on two IV indicators,
1[Z = z8] and 1[Z = zc] without a constant term (first stage) and then regresses the interaction
Y Dtl on a constant and the fitted values D̂tl (second stage):

First Stage: Dtl = γ11[Z = z8] + γ21[Z = zc] + ϵD (148)

Second Stage: Y Dtl = β0 + βIV D̂tl + ϵY , (149)

γ1, γ2 are linear coefficients of the first stage, β0 is the intercept of the second stage, and βIV is
the linear coefficient that estimates E(Y (tl)|S = spl). We can estimate different counterfactual
outcomes by varying the IV-indicators and neighborhood choices as listed in Table A.8.
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Table A.8: Two-Stage Least Square Estimation for Identified Parameters

Data Transformations

Endogenous Variables Dependent Variable Instrumental Variable Identified Parameters

Choice Indicator Outcome Interaction IV Indicators

Dth ≡ 1[T = th] Dth · Y 1[Z = zc] 1[Z = ze] E(Y (th)|S ∈ {sfc, spl})
1[Z = z8] 1[Z = ze] E(Y (th)|S = sph)

Dtm ≡ 1[T = tm] Dtm · Y 1[Z = zc] 1[Z = z8] E(Y (tm)|S ∈ {sfc, sph})
1[Z = zc] 1[Z = ze] E(Y (tm)|S = spm)

Dtl ≡ 1[T = tl] Dtl · Y
1[Z = zc] 1[Z = z8] E(Y (tl)|S = spl)
1[Z = z8] 1[Z = ze] E(Y (tl)|S ∈ {sfc, spm})

This table lists the counterfactual outcome means estimated by 2SLS procedures. The first stage estimates use two IV indicators
(columns 3 and 4) that are multiplied by γ1, γ2 in (148). The choice indicator (column 1) is the endogenous variable estimated
in the first stage (148). The second stage uses the interaction of the outcome and the choice indicator (column 2) as dependent
variable and uses the estimate of the first stage, which is multiplied by the linear coefficient βIV in . The last column lists the
identified counterfactual outcome mean.

We can control for pre-program variables X in a linear fashion by including these variables as
covariates in the 2SLS regressions. Angrist and Imbens (1995) show that the 2SLS estimate is a
weighted average of the counterfactual outcomes conditioned on the covariates. Weights consist of
the variance of the choice indicators conditioned on the covariates.

Abadie (2003) proposes a κ-weighting scheme that nonparametrically controls for baseline vari-
ables in the LATE model.71 The triangular property in (35) and (42) enables us to extend Abadie’s
κ to the case of multiple choices.

Counterfactual outcome E (Y (tl)|S = spl) is identified as a ratio of two matching estimators
that depend on z8 and zc. This counterfactual outcome can also be expressed in (150) as the
expectation of the observed outcome Y multiplied by a weighting function κ(tl, spl) in (151) which
depends on z8 and zc.

E (Y (tl)|S = spl) = E

(
Y · κ(tl, spl)

E(κ(tl, spl)

)
, (150)

such that κ(tl, spl) = Dtl

(
1[Z = z8]

P (Z = z8|X)
− 1[Z = zc]

P (Z = zc|X)

)
. (151)

Equation (150) also holds if Y were to be replaced by any measurable function g(Y,Dtl ,X). The
κ-weighting in (151) can be evaluated from data. It consists of the choice indicatorDtl multiplied by
the difference between IV indicators of z8 and zc divided by their respective probabilities conditional
on baseline variables X. E (Y (tl)|S = spl) can be estimated by the sample counterpart of (150),
that is,

∑
i Yi · ωi, where ωi = κi(tl, spl)/(

∑
i κi(tl, spl)) are weights that sum to one and κi(tl, spl)

is the κ-weight of family i.

The practical use of the κ-weights is to evaluate causal parameters via conventional estimation
procedures that reweighed data according to the estimated values of κ. An example of an estimation
procedure for E (Y (tl)|S = spl) is: (1) estimate P (Z = z8|X), P (Z = zc|X); (2) construct weights

κ̂(tl, spl) as in (151); (3) estimate β1 in regression Y ·Dtl = β0+β1D̂tl+β2X+ϵY via weighted least
squares (WLS) that employ weights κ̂(tl, spl). The WLS solves the sample analog of (β0, β1, β2) =

71Abadie (2003) shows that the counterfactual outcomes of the LATE model can be evaluated by a weighted average
of the outcome across the whole population. He names the weighting functions κ.
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argminb0,b1,b2 E(κ · g(Y,D,X)), where g(Y,D,X) = (Y Dtl − (b0 + b1D̂tl + b2X))2.

Weights κ for counterfactual outcomes in Table A.8 can be obtained by replacing Dtl , z8, zc in
(151) by their corresponding neighborhood choice and IV indicators.

G Identification and Estimation of Counterfactual Outcomes

This section provides further information on the solution to the problem of partial identification
in MTO. Section G.1 estimates bounds for the partially identified effects. Section G.2 presents the
identification strategy for all partially identified counterfactual outcomes in the same fashion that
Section 5.3 describes the identification of partially identified outcomes for low poverty neighborhood.
Section G.3 discusses the propensity score estimator in greater detail.

G.1 Estimating Bounds for Partially Identified Counterfactuals

The primary goal of the MTO evaluation is to assess the neighborhood effects for the full-compliers
sfc. This response type consists of families that are most responsive to vouchers incentives. Full
compliers also comprise the largest set of families among the compliers. We are particularly inter-
ested in evaluating the neighborhood effect that compares low- and high-poverty neighborhoods,
that is, E(Y (tl)− Y (th)|S = sfc).

Unfortunately, according to Theorem T.1, the counterfactual outcomes of the full-compliers
are not point-identified. Instead, each of the counterfactuals for the full-compliers are partially
identified: E(Y (th)|S ∈ {sfc, spl}), E(Y (tm)|S ∈ {sfc, sph}), and E(Y (tl)|S ∈ {sfc, spm}).

One way to evaluate neighborhood effects is to look for additional assumptions that would
allow us to identify these counterfactual outcomes. This is done in Section 5 of the main paper.
Another approach, which is pursued here, is to evaluate bounds for the counterfactual outcomes of
full-compliers. Let’s take the counterfactual for low-poverty neighborhood E(Y (tl)|S ∈ {sfc, spm})
as our main example for bound analysis. The identification equation for this counterfactual is:

E(Y (tl)|S ∈ {sfc, spm}) = E(Y Dtl |Z = ze)− E(Y Dtl |Z = z8)

Ptl(ze)− Ptl(z8)
(152)

(153)

It is useful to rewrite the numerator in the right-hand side of (152) in the following fashion:

E(Y Dtl |Z = ze)− E(Y Dtl |Z = z8) =
E(Y Dtl · 1[Z = ze])

P (Z = ze)
− E(Y Dtl · 1[Z = z8])

P (Z = z8)

=
E(Y · 1[Z = ze]|T = tl)P (T = tl)

P (Z = ze)
− E(Y · 1[Z = z8]|T = tl)P (T = tl)

P (Z = z8)

= E

(
Y ·

(
1[Z = ze]

P (Z = ze)
− 1[Z = z8]

P (Z = z8)

)∣∣∣∣T = tl

)
P (T = tl)

We can then rewrite the identification formula (152) as following:

E(Y (tl)|S ∈ {sfc, spm}) = E (Y · κl|T = tl) (154)

where κl =

(
1[Z = ze]

P (Z = ze)
− 1[Z = z8]

P (Z = z8)

)
· P (T = tl)

Ptl(ze)− Ptl(z8)
. (155)

The expression above is closely related to the κ-weighting scheme of Abadie (2003). The cumulative
distribution of the counterfactual Y (tl) conditioned on S ∈ {sfc, spm} is identified by P (Y (tl) ≤
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y|S ∈ {sfc, spm}) = E(1[Y ≤ y] · κl). The representation in (154)–(155) is useful to show that the
expectation and the distribution of Y (tl) conditioned on S ∈ {sfc, spm} are identified and they only
depend on the distribution of Y and Z conditioned on T = tl. In the same token, the identification
of the partially identified counterfactuals for the neighborhood choices th and tm depend only on
the distribution of Y,Z conditioned on th and tm respectively. This is relevant because we can
examine the bounds corresponding to each neighborhood choice separately.

It is useful to express the mean of the partially identified counterfactual outcome as the following
mixture:

E(Y (tl)|S ∈ {sfc, spm}) = E(Y (tl)|S = sfc) · ωl + E(Y (tl)|S = spm) · (1− ωl) (156)

where ωl =
P (S = sfc)

P (S = sfc) + P (S = spm)
. (157)

The weight ωl is known since the response-type probabilities are identified. Thus, the problem of
assessing bounds for E(Y (tl)|S = sfc) can be understood as the standard problem of evaluating
bounds for the mean of an unobserved potential outcome that is a component of a known mixing
distribution P (Y (tl) ≤ y|S ∈ {sfc, spm}) with a known mixing probability ωl. This problem is
investigated by Horowitz and Manski (1995), who presents the sharp bounds for the mean potential
outcome in Proposition 4 of Section 3.2. The bounds for a real-valued random variable Y are given
by:

E(Y (tl)|S = sfc) ∈

[
1

ωl

∫ ql(ωl)

−∞
y dQl(y) ,

1

ωl

∫ ∞

ql(1−ωl)

y dQl(y)

]
, (158)

where Ql(y) = P (Y (tl) ≤ y|S ∈ {sfc, spm}) is the cumulative distribution function of Y (tl)
conditioned on S ∈ {sfc, spm}, and ql(ωl) = infy{Ql(y) ≥ ωl} is the ωl-quantile of Ql(y). The
bounds for E(Y (tl)|S = sfc) in (158) are given by trimmed means [E(Y (tl)|S ∈ {sfc, spm}, Y (tl) ≤
ql(ωl)), E(Y (tl)|S ∈ {sfc, spm}, Y (tl) > ql(1− ωl))].

The bounds for E(Y (tl)|S = sfc) are estimated as the empirical counterpart of equation (158).
This estimation requires the evaluation of the empirical cumulative distribution function of Y (tl)
conditioned on S ∈ {sfc, spm}, that is, Ql(y) = E(1[Y (tl) ≤ y]|S ∈ {sfc, spm}) for all y ∈ supp(Y ).
Note that Sections G.4–G.5 describe how to estimate the counterfactual mean E(Y (tl)|S = sfc).
The cumulative distribution Ql(y) is estimated using the same method when replacing the outcome
Y by the indicator 1[Y ≤ y].

Table A.9 provides estimated bounds for all the counterfactual outcomes and neighborhood
effects for the full-compliers sfc. The bounds for the counterfactual outcomes are informative, but
the bounds for the neighborhood effects are not. This is not entirely unexpected, as these results
are consistent with a sizeable IV literature which often finds that bounds for treatment effects are
commonly wide and rarely informative (Brinch et al., 2017; Heckman and Vytlacil, 2007).

G.2 Identification Strategy for Partially Identified Counterfactuals

Section 5.3 of the main paper describes the problem of partial identification for the low-poverty
neighborhood tl, where we seek to decompose the identified counterfactual mean E(Y (tl)|S ∈
{sfc, spm}) into E(Y (tl)|S = sfc) and E(Y (tl)|S = spm).

The partially identified counterfactual E(Y (tl)|S ∈ {sfc, spm}) is identified by the LATE pa-
rameter that compares the IV values z8, ze. According to Theorem T.4, E(Y (tl)|S ∈ {sfc, spm})
can be expressed as the integral of the response function E(Y (tl)|Utl = u) over the propensity
score interval [Ptl(z8), Ptl(ze)]. Note that the length of the interval is equal to the response type
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probability (S ∈ {sfc, spm}) = Ptl(ze)− Ptl(z8).

The strategy to decompose E(Y (tl)|S ∈ {sfc, spm}) consists of two steps. The first one is to
split the interval [Ptl(z8), Ptl(ze)] be split into [Ptl(z8), Ptl(z8) + P (S = sfc)], corresponding to
sfc, and [Ptl(z8) + P (S = sfc), Ptl(ze)], corresponding spm. The equations associated with this
decomposition are listed below:

E(Y (tl)|S ∈ {sfc, spm}) =

∫ Ptl
(ze)

Ptl
(z8)

E(Y (tl)|Utl = u)du

P (S = sfc)
=

E(Y Dtl |Ptl = Ptl(ze))− E(Y Dt|Ptl = Ptl(z8))

Ptl(ze)− Ptl(z8)
,

E(Y (tl)|S = sfc) =

∫ p∗

Ptl
(z8)

E(Y (tl)|Utl = u)du

P (S = sfc)
=

E(Y Dtl |Ptl = p∗)− E(Y Dt|Ptl = Ptl(z8))

p∗ − Ptl(z8)
,

E(Y (tl)|S = spm) =

∫ Ptl
(ze)

p∗ E(Y (tl)|Utl = u)du

P (S = spm)
=

E(Y Dtl |Ptl = Ptl(ze))− E(Y Dt|Ptl = p∗)

Ptl(ze)− p∗
,

where Ptl ≡ P (T = tl|Z) is the propensity score and p∗ = Ptl(z8) + P (S = sfc).

The second step consists of using a parametric function to evaluate the LATE-type equations
above using a propensity score estimator.

A symmetric argument applies to the decomposition of the partially identified counterfactu-
als for choices th and tm. In the case of tm, we seek to decompose E(Y (tm)|S ∈ {sfc, sph}) into
E(Y (tm)|S = sfc) and E(Y (tm)|S = sph). The partially identified counterfactual E(Y (tm)|S ∈
{sfc, sph}) is identified by the LATE parameter that compares the IV values zc, z8. The iden-
tification strategy splits propensity score interval [Ptm(zc), Ptl(z8)] associated with the response
types {sfc, sph} into [Ptm(zc), Ptl(zc) + P (S = sfc)], corresponding to sfc, and [Ptm(zc) + P (S =
sfc), Ptm(z8)], corresponding sph. The equations associated with this decomposition are listed be-
low:

E(Y (tm)|S ∈ {sfc, sph}) =

∫ Ptm (z8)

Ptm (zc)
E(Y (tm)|Utm = u)du

P (S = sfc)
=

E(Y Dtm |Ptm = Ptm(z8))− E(Y Dt|Ptm = Ptm(zc))

Ptm(z8)− Ptm(zc)
,

E(Y (tm)|S = sfc) =

∫ p∗

Ptm (zc)
E(Y (tm)|Utm = u)du

P (S = sfc)
=

E(Y Dtm |Ptm = p∗)− E(Y Dt|Ptm = Ptm(zc))

p∗ − Ptm(zc)
,

E(Y (tm)|S = sph) =

∫ Ptm (z8)

p∗ E(Y (tm)|Utm = u)du

P (S = sph)
=

E(Y Dtm |Ptm = Ptm(z8))− E(Y Dt|Ptm = p∗)

Ptm(z8)− p∗
,

where Ptm ≡ P (T = tm|Z) is the propensity score and p∗ = Ptm(zc) + P (S = sfc).

In the case of th, we seek to decompose E(Y (th)|S ∈ {sfc, spl}) into E(Y (th)|S = sfc) and
E(Y (th)|S = spl). The partially identified counterfactual E(Y (th)|S ∈ {sfc, spl}) is identified by
the LATE parameter that compares the IV values ze, zc. The identification strategy splits propensity
score interval [Pth(ze), Ptl(zc)] associated with the response types {sfc, spl} into [Pth(ze), Ptl(ze) +
P (S = sfc)], corresponding to sfc, and [Pth(ze) + P (S = sfc), Pth(zc)], corresponding spl. The
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equations associated with this decomposition are listed below:

E(Y (th)|S ∈ {sfc, spl}) =

∫ Pth
(zc)

Pth
(ze)

E(Y (th)|Uth = u)du

P (S = sfc)
=

E(Y Dth |Pth = Pth(zc))− E(Y Dt|Pth = Pth(ze))

Pth(zc)− Pth(ze)
,

E(Y (th)|S = sfc) =

∫ p∗

Pth
(ze)

E(Y (th)|Uth = u)du

P (S = sfc)
=

E(Y Dth |Pth = p∗)− E(Y Dt|Pth = Pth(ze))

p∗ − Pth(ze)
,

E(Y (th)|S = spl) =

∫ Pth
(zc)

p∗ E(Y (th)|Uth = u)du

P (S = spl)
=

E(Y Dth |Pth = Pth(zc))− E(Y Dt|Pth = p∗)

Pth(zc)− p∗
,

where Pth ≡ P (T = th|Z) is the propensity score and p∗ = Pth(ze) + P (S = sfc).

Note that all three identification strategies split the propensity score intervals such that the
first interval corresponds to the full-compliers sfc while the second interval is ascribed to a partial-
complier. Specifically, the first interval [Ptl(z8), Ptl(z8) + P (S = sfc)] of [Ptl(z8), Ptl(ze)] for tl
corresponds to full-complier sfc, while the second interval [Ptl(z8) + P (S = sfc), Ptl(ze)] corre-
sponding the partial-complier spm. This ordering is maintained for choices tm and th as well. In
the case of tm, the first interval corresponds to full-complier sfc while the second to sph. In the
case of th, the first interval corresponds to full-complier sfc while the second to spl.

It is natural to question if it is possible to assign the second interval to the full-compliers instead
of the first interval. It turns out that this is not a viable strategy. Theorem T.5 explains that
assigning the second interval to the full-compliers (instead of the first interval) is only possible if the
response-type probabilities of at least two partial-compliers is zero, which is against the empirical
evidence in MTO.

Theorem T.5. Consider the IV model characterized by assumptions (1)–(3) in which the response
matrix (29) holds, and each choice indicator is given by equation (46), that is, Dt = 1[Pt(Z) ≥
Ut];Ut ∼ Unif [0, 1] for t ∈ {th, tm, tl}. Suppose that the intervals corresponding to the partial-
compliers (spm, sph, spl) in the support of (Utl , Utm , Uth) preceded the intervals corresponding to
the full-complier sfc. Then it must be the case that the response type probability of at least two
of these partial-compliers is zero. On the other hand, there are no probability constraints if the
intervals corresponding to the full-compliers sfc precede the intervals corresponding to the partial-
compliers (spm, sph, spl) in (Utl , Utm , Uth).

Proof. See Appendix G.2.1 for proof.

G.2.1 Proof of Theorem T.5

Assumptions (1)–(3) enable us to relate propensity scores and response type probabilities by the
following equation:

Pt(z) ≡ P(T = t|Z = z) =
∑

s∈supp(S)

1[T = t|S = s, Z = z]P(S = s). (159)

The equation above shows that each propensity score equals a sum of response type probabilities.
The triangular property of the MTO response matrix in (35), (42), and (43) enable us to map each
propensity score to nested sets of response types. In the case of tl, we can use equation (159) and
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Rl in (35) to express the propensity scores as:

Ptl(zc) =
∑

s∈{sal}

P (S = s) ⇒ Ptl(zc) = P (S ∈ {sal})

Ptl(z8) =
∑

s∈{sal,spl}

P (S = s) ⇒ Ptl(z8) = P (S ∈ {sal, spl})

Ptl(ze) =
∑

s∈{sal,spl,sfc,spm}

P (S = s) ⇒ Ptl(ze) = P (S ∈ {sal, spl, sfc, spm})

Note that the triangular property of the MTO response matrix maps the propensity scores into a
family of nested sets of response types. This sequence of nested sets determines the ordering of the
response types along the support of the variable Ut of the choice indicator Dt = 1[Pt(Z) ≥ Ut].
Figure 2 displays the ordering of response types for tl. In summary, the sequence of the response
types associated with each variable Ut; t ∈ {th, tm, , tl} is given below:

� The sequence of response types associated with Uth is: (sah, sph, {sfc, spl}, {spm, sam, sal})

� The sequence of response types associated with Utm is: (sam, spm, {sfc, sph}, {spl, sal, sah})

� The sequence of response types associated with Utl is: (sal, spl, {sfc, spm}, {sph, sah, sam})

Figure A.5 presents a diagram that displays the ordering of the response types associated with each
variable Ut.

Figure A.5: Order of Response types for Each Neighborhood Choice due to MTO Response Matrix

0 1

sah sph spl sfc spm sam salUth

Pth(z8) Pth(ze) Pth(zc)

0 1

sam spm sph sfc spl sal sahUtm

Ptm(ze) Ptm(zc) Ptm(z8)

0 1

sal spl spm sfc sph sah samUtl

Ptl(zc) Ptl(z8) Ptl(ze)

We seek to split three intervals: (1) {sfc, spl} associated with Uth ; (2) {sfc, sph} associated
with Utm ; (3) {sfc, spm} associated with Utl . The theorem considers the ordering of the response
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types in Figure A.5. It investigates the case where the partial compliers spl, sph, spm precede the
full-compliers sfc. This ordering scheme is displayed in the diagram of Figure A.6.

Figure A.6: Order of Response types Assuming that Partial-compliers precede Full-compliers

0 1

sah sph spl sfc spm sam salUth

Pth(z8) Pth(ze) Pth(zc)

0 1

sam spm sph sfc spl sal sahUtm

Ptm(ze) Ptm(zc) Ptm(z8)

0 1

sal spl spm sfc sph sah samUtl

Ptl(zc) Ptl(z8) Ptl(ze)

It is useful to clarify the choice scheme displayed by the diagram of Figure A.6.

Consider the top bar which refers to variable Uth . The sequence of response types displayed in
the bar is sah, sph, spl, sfc, spm, {sam, sal}. According to the choice equation Dth = 1[pth ≥ Uth ],
this sequence of response types implies a specific choice scheme. If the propensity score of choice th
is set to pth = P (S = sal), then, sah-families choose th while the other family types will not. If the
propensity score of choice th is set to pth = P (S ∈ {sal, sph}), then, families of type sah and sph
choose th while the other family types will not. This pattern continues according to the sequence
of the response types displayed for th. The symmetric choice procedure also holds for the remaining
choices.

We seek to investigate the choice scheme generated by assuming that partial-compliers precede
the full-compliers. In the case of th, it means that spl precedes sfc. Thus considering setting the
propensity score of choice th to pth = P (S ∈ {sah, sph, spl}). This means that families of type
sah, sph and spl choose th, while the families associated with the remaining response types, that is,
sfc, spm, sam and sal do not choose th. In particular, the full-compliers sfc must choose tm or tl.
These two possibilities are considered below:

� Suppose that full-compliers sfc choose tm. Thus, according to the sequence of response types
of Um (second bar), it must be the case that pm ≥ P (S ∈ {sam, spm, sph, sfc}). Note that,
according to equation Dth = 1[pth ≥ Uth ], it implies that families of type sam, spm and sph
also choose tm. There lies a contradiction since we have established that families of type sph
were already choosing th.

� Suppose that full-compliers sfc choose tl. Thus, according to the sequence of response types
of Ul (third bar), it must be the case that pl ≥ P (S ∈ {sal, spl, spm, sfc}). Thus, according to
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equation Dtl = 1[ptl ≥ Utl ], families of type sal, spl and spm also choose tl. There lies another
contradiction since we have established that families of type spl were already choosing th.

In summary, for the full-compliers to choose tm or tl, it must be the case that either spl or sph do
not exist. That is to say that either P (S = spl)− 0 or P (S = sph)− 0. The same rationale applies
to the analysis of choices tm and tl. Namely, if we set ptm = P (S ∈ {sam, spm, sph}), then the full-
compliers sfc must choose either th or tl, and this choice behavior is possible only if P (S = spm)−0
or P (S = sph)− 0. Finally, if we set ptl = P (S ∈ {sal, spl, spm}), then the full-compliers scf must
choose either th or tm, and this choice behavior is possible only if P (S = spl)−0 or P (S = spm)−0.

The central message conveyed by this theorem is that assuming that partial-compliers precede
full-compliers generates a contradictory choice scheme. Fortunately, these contradictions do not oc-
cur when full-compliers precede the partial-compliers. Figure A.7 presents the sequence of response
types in which the full-compliers precede the partial-compliers.

Figure A.7: Order of Response types Assuming that Full-compliers precede Partial-compliers

0 1

sah sph sfc spl spm sam salUth

Pth(z8) Pth(ze) Pth(zc)

0 1

sam spm sfc sph spl sal sahUtm

Ptm(ze) Ptm(zc) Ptm(z8)

0 1

sal spl sfc spm sph sah samUtl

Ptl(zc) Ptl(z8) Ptl(ze)

Consider the sequence of response types of Uth displayed in the first bar of Figure A.7. Setting
the propensity score of choice th to pth = P (S ∈ {sah, sph, sfc}). This means that families of
type sal, sph and sfc choose th. The families associated with the remaining response types, that is,
spl, spm, sam and sal do not choose th. This choice behavior is consistent with setting the propensity
score of choice tm to ptm = P (S ∈ {sam, spm}), and the propensity score of choice tl to ptl = P (S ∈
{sal, spl}).

In the case of choice tm, the sequence of response types in Figure A.7 also provides consistent
choice behaviors when we set the propensity scores to ptm = P (S ∈ {sam, spm, sfc}), pth = P (S ∈
{sah, sph}), and ptl = P (S ∈ {sal, spl}).

In the case of choice tl, the sequence of response types in Figure A.7 also provides consistent
choice behaviors when we set the propensity scores to ptl = P (S ∈ {sal, spl, sfc}), ptm = P (S ∈
{sam, spm}), and pth = P (S ∈ {sah, sph}).
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G.3 The Propensity Score Estimator with Covariates

Consider any counterfactual outcome mean E(Y (t)|S = s) for a choice t ∈ {th, tm, tl} identified
by the LATE-type parameter that compares the values z, z′ ∈ {zc, z8, ze} such that such that
Pt(z

′) > Pt(z). According to Theorem T.4, we can express this counterfactual as following:

E(Y (t)|S = s) =

∫ Pt(z
′)

Pt(z)
E(Y (t)|Ut = u)du

Pt(z)− Pt(z′)
, (160)

In summary, equation (160) simply describes a connection between instrumental values z, z′, neigh-
borhood choice t and their associated with response type s ∈ supp(S). The numerator in (160) is
identified by:∫ Pt(z

′)

Pt(z)

E(Y (t)|Ut = u)du =

= E(Y (t)1[Pt(z) ≤ Ut ≤ Pt(z
′)])

= E(Y (t)1[Ut ≤ Pt(z
′)]− 1[Ut ≥ Pt(z)])

= E(Y (t)1[Ut ≤ Pt(Z)]|Pt(Z) = Pt(z
′))− E(Y (t)1[Ut ≥ Pt(Z)]|Pt(Z) = Pt(z))

= E(Y Dt|Pt(Z) = Pt(z
′))− E(Y Dt|Pt(Z) = Pt(z)) (161)

This section seeks to identify (160) as a function of propensity scores conditional of X, that is
Pt(z,x) ≡ P (T = t|Z = z,X = x). The conditional version of (161) is given by:

E(Y (t)|S = s,X = x) =

∫ Pt(z,x)

Pt(z′,x)
E(Y (t)|Ut = u,X = x)du

Pt(z,x)− Pt(z′,x)

=
E(Y Dt|Pt(Z) = Pt(z

′,x),X = x)− E(Y Dt|Pt(Z) = Pt(z,x),X = x)

Pt(z′,x)− Pt(z,x)
(162)

Integrating E(Y (t)|S = s,X = x) over X generates the following equation:∫
E(Y (t)|S = s,X = x)dFX|S=s(x) =

∫
E(Y (t)|S = s,X = x)dFX|S=s(x)

=

∫
E(Y (t)|S = s,X = x)

P (S = s|X = x)

P (S = s)
dFX(x), (163)

where the second equality is due to Bayes’ theorem. Recall that P (S = s|X = x) = Pt(z
′,x) −

Pt(z,x) and thereby P (S = s) =
∫
Pt(z

′,x)−Pt(z,x)dFX(x). Inserting (162) into (163) and using
the above results generates:

E(Y (t)|S = s) =

=

∫ (
E(Y Dt|Pt(Z) = Pt(z

′,x),X = x)− E(Y Dt|Pt(Z) = Pt(z,x),X = x)
)
dFX(x)∫

Pt(z′,x)− Pt(z,x)dFX(x)
(164)

G.4 Estimation Formulas for Counterfactual Outcomes

Let Pt(z,x) = P (T = t|Z = z,X = x) be the propensity score for choice t ∈ {th, tm, tl} conditioned
on the baseline variables X = x given the instrumental value z ∈ {zc, z8, ze}. Let Mt(p,x) =
E(Y · Dt|Pt = p,X = x) be the expected value of the interaction Y · Dt for t ∈ {th, tm, tl}
conditioned on the propensity score value Pt = p and baseline variables X = x. Under this
notation, the counterfactual outcome means for th can be estimated by the empirical counterpart
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of the following expressions:

E(Y (th)|S = sah) =

∫ (
Mth(Pth(z8,x),x)

)
dFX(x)∫

Pth(z8,x)dFX(x)
,

E(Y (th)|S = sph) =

∫ (
Mth(Pth(ze,x),x)−Mth(Pth(z8,x),x)

)
dFX(x)∫ (

Pth(ze,x)− Pth(z8,x)
)
dFX(x)

,

E(Y (th)|S = sfc) =

∫ (
Mth(Pth(ze,x) + Pfc(x),x)−Mth(Pth(ze,x),x)

)
dFX(x)∫

Pfc(x)dFX(x)
,

E(Y (th)|S = spl) =

∫ (
Mth(Pth(zc,x),x)−Mth(Pth(ze,x) + Pfc(x),x)

)
dFX(x)∫ (

Pth(zc,x)− Pth(ze,x)− Pfc(x)
)
dFX(x)

,

where Pfc(x) =
(
Pth(z8,x)− Pth(ze,x)

)
−
(
Ptm(zc,x)− Ptm(z8,x)

)
.

The counterfactual outcome means for tm can be estimated by the empirical counterpart of the
following expressions:

E(Y (tm)|S = sam) =

∫ (
Mtm(Ptm(ze,x),x)

)
dFX(x)∫

Ptm(ze,x)dFX(x)
,

E(Y (tm)|S = spm) =

∫ (
Mtm(Ptm(zc,x),x)−Mtm(Ptm(ze,x),x)

)
dFX(x)∫ (

Ptm(zc,x)− Ptm(ze,x)
)
dFX(x)

,

E(Y (tm)|S = sfc) =

∫ (
Mtm(Ptm(zc,x) + Pfc(x),x)−Mtm(Ptm(zc,x),x)

)
dFX(x)∫

Pfc(x)dFX(x)
,

E(Y (tm)|S = sph) =

∫ (
Mtm(Ptm(z8,x),x)−Mtm(Ptm(ze,x) + Pfc(x),x)

)
dFX(x)∫ (

Ptm(z8,x)− Ptm(zc,x)− Pfc(x)
)
dFX(x)

,

where Pfc(x) =
(
Ptm(z8,x)− Ptm(ze,x)

)
−

(
Ptm(zc,x)− Ptm(z8,x)

)
.

The counterfactual outcome means for tl can be estimated by the empirical counterpart of the
following expressions:

E(Y (tl)|S = sam) =

∫ (
Mtl(Ptl(zc,x),x)

)
dFX(x)∫

Ptl(zc,x)dFX(x)
,

E(Y (tl)|S = spm) =

∫ (
Mtl(Ptl(z8,x),x)−Mtl(Ptl(zc,x),x)

)
dFX(x)∫ (

Ptl(z8,x)− Ptl(zc,x)
)
dFX(x)

,

E(Y (tl)|S = sfc) =

∫ (
Mtl(Ptl(z8,x) + Pfc(x),x)−Mtl(Ptl(z8,x),x)

)
dFX(x)∫

Pfc(x)dFX(x)
,

E(Y (tl)|S = sph) =

∫ (
Mtl(Ptl(ze,x),x)−Mtl(Ptl(z8,x) + Pfc(x),x)

)
dFX(x)∫ (

Ptl(ze,x)− Ptl(z8,x)− Pfc(x)
)
dFX(x)

,

where Pfc(x) =
(
Ptl(z8,x)− Ptl(ze,x)

)
−

(
Ptl(zc,x)− Ptl(z8,x)

)
.

G.5 Estimation Procedure of Counterfactual Outcomes

The estimation of counterfactual outcomes is based on a standard application of the propensity
score estimator. We use the ingredients (60) and (62) to estimate expressions such as (49)–(51).
The method consists of the following steps:

1. Estimate the conditional propensity score Pt,i(z) ≡ P (T = t|Z = z,X = Xi,K = Ki) for
(t, z) ∈ {th, tl, tm} × {zc, z8, ze}, given the baseline characteristics Xi,Ki of family i;

2. Estimate the conditional expected value of the interaction Mt,i(p) = E(Y · Dt|Pt = p,X =
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Xi,K =Ki) as a function of the propensity scores Pt for choice t, given the baseline charac-
teristics Xi,Ki of family i;

3. Estimate the counterfactual outcome means E(Y (t)|S = s) using the empirical counterpart
of the propensity score estimator discussed in (49).

The first step estimates the propensity scores using the following linear probability model:

Dt,i =
∑

z∈{zc,z8,ze}

1[Zi = z] ·
(
αt,z +Xiθt,z +Kiγt,z

)
+ ϵt,i; t ∈ {tl, tm, th}. (165)

The estimate for the propensity score for a family i and IV-value z is given by:

P̂t,i(z) = α̂t,z +Xiθ̂t,z +Kiγ̂t,z; for (t, z) ∈ {th, tl, tm} × {zc, z8, ze}.

In particular, the estimate for the full-complier probability conditioned on the baseline character-
istics of family i is P̂i(sfc) =

(
P̂th,i(z8)− P̂th,i(ze)

)
−
(
P̂tm,i(zc)− P̂tm,i(z8)

)
. The fact that baseline

variables X,K are standardized to have mean zero assures that the estimates for propensity scores
P̂t,i(zc), P̂t,i(z8), P̂t,i(ze) sum to one for each family i. The linear probability model does not impose
positive probabilities.

The second step evaluates the conditional expectation of the interaction Y Dt as a local poly-
nomial of propensity the score estimates:

Yi ·Dt,i =

3∑
k=0

αk ·
(
P̂t,i

)k
+
(
P̂t,i ·Ki

)
ξt +

(
P̂t,i ·Xi

)
ψt +Kiγt +Xiθt + ϵt,i, (166)

where P̂t,i ≡ P̂t,i(Zi) is the propensity score of family i. Appendix H evaluates the propensity
scores using the multinomial logistic regression. The empirical results using the logistic model are
closely related to the ones presented in the main paper. The estimate for Mt,i(p) is M̂t,i(p) =∑3

k=0 α̂k · pk + p(Kiξ̂t +Xiψ̂t) +Kiγ̂t +Xiθ̂t.

Start to evaluate the conditional expectations of the counterfactual outcomes. For instance,
E(Y (tl)|S = sfc) in (49), we use the previous to establish [Ptl(z8), Ptl(z8) + P (sfc)] to form the
empirical counterpart of equation (52):

Ê(Y (tl)|S = sfc) =

∑
i

(
M̂tl,i

(
P̂tl,i(z8) + P̂i(sfc)

)
− M̂tl,i

(
P̂tl,i(z8)

))
·Wi∑

i P̂i(sfc) ·Wi

(167)

where Wi denotes the MTO weights.

G.6 Connection between TSLS and Propensity Score Estimations

E(Y (tl)|S = sfc) and E(Y (tl)|S = spm) are estimated by interpolation.72 It is instructive that
explain the connection with this interpolation approach with the standard 2SLS regression.

72Recently, Brinch, Mogstad, and Wiswall (2017); Kline and Walters (2017); Mogstad, Andres, and Torgovitsky
(2017); Mogstad and Torgovitsky (2018) have studied the problem of assessing ATE in binary choice models with
discrete instruments by extrapolating the Marginal Treatment Effect MTE parameter of Heckman and Vytlacil
(2005). The method described here differs from this literature in three instances: it investigates a multiple choice
model instead of the binary case, it seeks to identify a LATE parameter instead of ATE and it employs interpolation
instead of extrapolation.
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A standard empirical approach is to estimate Pt(z) = P (T = t|Z = z) and then evaluate Dtl

and Y Dtl as a polynomial of propensity scores:

Dtl,i = θ0 + θ1Ptl,i + θ2P
2
tl,i

+ ϵi,D = Λ(Ptl,i)θ + ϵi,D, (168)

YiDtl,i = β0 + β1Ptl,i + β2P
2
tl,i

+ ϵi,Y = Λ(Ptl,i)β + ϵi,D, (169)

where Ptl,i = Ptl(Zi) denotes the propensity score of tl for family i, and Λ(p) = [1, p, p2] simply
stacks the polynomial as a vector. The estimator for E(Y (tl)|S ∈ {sfc, spm}) in (170) is numerically
the same as the TSLS estimator of Table A.8. Moreover, this equivalence holds for any choice of
linearly independent functions in Λ(z) and for any method that estimates the propensity scores.
Kline and Walters (2019) provides a recent discussion on numerical equivalence among estimators
for the LATE model.

The key feature that is at the core of such equivalences is the space spanned by suing the indi-
cators of the IV-values versus the polynomials of the propensity scores. To gain intuition, suppose
that the instrument Z takes three values z1, z2, z3 and let p̂1, p̂2, p̂3 the propensity scores associated
with a treatment indicator Dt. Now consider the linear regression that uses the interaction Y ·Dt as
dependent variable. Using the indicator of the IV-values or a second degree polynomial generates
the same fitted values of the regression. Indeed, the matrix of explanatory variables in both models
span the same space. The two matrices below represent the values of the explanatory variables as
Z ranges in z1, z2, z3 for each model. Both matrices have full rank and span the same space.

z1
z2
z3

[ ]1 0 0
0 1 0
0 0 1

,

[ ]1 p1 p21
1 p2 p22
1 p3 p23

.

Returning to model (168)–(169), the estimation of the counterfactual outcome means is given
by:

Ê(Y (tl)|S ∈ {sfc, spm}) =

(
Λ(Ptl(ze))−Λ(Ptl(z8))

)′
β̂t(

Λ(Ptl(ze))−Λ(Ptl(z8))
)′
θ̂t

, (170)

The response type probability is estimated as P (S = sfc) =
(
Pth(z8) − Pth(ze)

)
−

(
Ptm(zc) −

Ptm(z8)
)
. We can then evaluate the probability P ∗ = Ptl(z8) + P (S = sfc) and disentangle

E(Y (tl)|S ∈ {sfc, spm}) in (170) via:

Ê(Y (tl)|S = sfc) =

(
Λ(P ∗)−Λ(Ptl(z8))

)′
β̂t(

Λ(P ∗)−Λ(Ptl(z8))
)′
θ̂t

, Ê(Y (tl)|S = spm) =

(
Λ(Ptl(ze))−Λ(P ∗)

)′
β̂t(

Λ(Ptl(ze))−Λ(P ∗)
)′
θ̂t

. (171)

H Sensitivity Analyses

This section present additional evaluations that check the robustness of these findings under mod-
ifications of the baseline model.

Tables A.10–A.12 presents results based on variations of the original model that generates
Table 7 of the main text.
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Table A.10 suppresses the interaction of site fixed effects and the propensity scores. Suppressing
the interaction between propensity scores and site fixed effects forces cities to shift the the mean
potential outcomes for a given neighborhood choice in parallel across all response types.

Table A.11 suppresses the interaction of baseline variables and propensity scores. This forces
that the family baseline characteristics to shift the mean potential outcomes for a given neighbor-
hood choice in parallel.

Table A.12 estimates the same outcome equation displayed in the main text. The model however
uses a multinomial logit model to estimate propensity scores, instead of the linear probability model
in (165).

Estimates in Tables A.10–A.12 are very close to those presented in Table 7.
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Table A.10: Causal Effects for Full Compliers S = sfc (No Site Interaction)

E(Y (tl)− Y (th)|sfc) E(Y (tl)− Y (tm)|sfc) E(Y (tm)− Y (th)|sfc)

Income of Family Head 2.030 ∗∗∗ 0.110 1.919 ∗∗

(s.e.) 0.761 0.896 0.902

(p-value) 0.005 0.905 0.032

Income of Head and Spouse 0.710 0.486 0.224
(s.e.) 0.826 0.899 1.019

(p-value) 0.393 0.598 0.800

Total household income 1.421 1.083 0.337
(s.e.) 0.871 0.981 1.060

(p-value) 0.117 0.277 0.752

Above Poverty Line 0.089 ∗∗ 0.038 0.051
(s.e.) 0.039 0.050 0.053

(p-value) 0.018 0.453 0.348

Employed without welfare 0.102 ∗∗ 0.034 0.068
(s.e.) 0.044 0.057 0.059

(p-value) 0.027 0.570 0.245

Currently on welfare −0.111 ∗∗∗ 0.061 −0.172 ∗∗∗

(s.e.) 0.041 0.055 0.057

(p-value) 0.008 0.270 0.010

Job tenure 0.073 0.028 0.044
(s.e.) 0.044 0.052 0.053

(p-value) 0.102 0.607 0.393

Economic self-sufficiency 0.062 ∗ −0.023 0.085 ∗

(s.e.) 0.033 0.045 0.045

(p-value) 0.062 0.592 0.055

Neighborhood Poverty −32.843 ∗∗∗ −20.999 ∗∗∗ −11.844 ∗∗∗

(s.e.) 0.996 1.690 1.914

(p-value) 0.000 0.000 0.000

This table evaluates the neighborhood effects for full compliers sfc across several outcomes. The first column lists the outcome
variables. The second column evaluates the causal effect between the neighborhood types of low and high poverty. The third
column compares low versus medium poverty neighborhoods and the last column evaluates the neighborhood effects between
medium versus high poverty types. The results are based on a semi-parametric method that evaluates propensity scores and
response type probabilities using a linear probability model. All estimates are conditioned on the site of intervention and account
for the person-level weight for adult survey of the interim analyses (Interim Impacts Evaluation manual, 2003, Appendix B).
Inference is obtained by a bootstrap method that employs a weighted sampling scheme. The p-values are associated with the
double-tailed inference that tests if the estimates are equal to zero. Asterisks indicate the typical p-value thresholds: ∗∗∗ for
p-value < 0.01, ∗∗ for 0.01 ≤ p-value < 0.05, ∗ for 0.05 ≤ p-value < 0.1.
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Table A.11: Causal Effects for Full Compliers S = sfc (No Covariate Interaction)

E(Y (tl)− Y (th)|sfc) E(Y (tl)− Y (tm)|sfc) E(Y (tm)− Y (th)|sfc)

Income of Family Head 2.188 ∗∗∗ −0.289 2.477
(s.e.) 0.822 1.516 1.469

(p-value) 0.005 0.847 0.112

Income of Head and Spouse 0.865 0.176 0.689
(s.e.) 0.862 1.642 1.711

(p-value) 0.335 0.910 0.663

Total household income 2.040 ∗∗ 0.693 1.347
(s.e.) 0.908 1.621 1.623

(p-value) 0.035 0.647 0.420

Above Poverty Line 0.122 ∗∗∗ −0.050 0.173 ∗

(s.e.) 0.042 0.086 0.084

(p-value) 0.008 0.607 0.082

Employed without welfare 0.114 ∗∗ 0.140 −0.026
(s.e.) 0.046 0.095 0.097

(p-value) 0.022 0.157 0.803

Currently on welfare −0.130 ∗∗∗ −0.048 −0.081
(s.e.) 0.044 0.090 0.089

(p-value) 0.007 0.565 0.343

Job tenure 0.094 ∗∗ 0.061 0.033
(s.e.) 0.047 0.096 0.094

(p-value) 0.048 0.533 0.723

Economic self-sufficiency 0.077 ∗∗ −0.133 0.210 ∗∗

(s.e.) 0.034 0.087 0.084

(p-value) 0.027 0.177 0.030

Neighborhood Poverty −33.283 ∗∗∗ −21.631 ∗∗∗ −11.652 ∗∗∗

(s.e.) 1.008 2.216 2.279

(p-value) 0.000 0.000 0.000

This table evaluates the neighborhood effects for full compliers sfc across several outcomes. The first column lists the outcome
variables. The second column evaluates the causal effect between the neighborhood types of low and high poverty. The third
column compares low versus medium poverty neighborhoods and the last column evaluates the neighborhood effects between
medium versus high poverty types. The results are based on a semi-parametric method that evaluates propensity scores and
response type probabilities using a linear probability model. All estimates are conditioned on the site of intervention and account
for the person-level weight for adult survey of the interim analyses (Interim Impacts Evaluation manual, 2003, Appendix B).
Inference is obtained by a bootstrap method that employs a weighted sampling scheme. The p-values are associated with the
double-tailed inference that tests if the estimates are equal to zero. Asterisks indicate the typical p-value thresholds: ∗∗∗ for
p-value < 0.01, ∗∗ for 0.01 ≤ p-value < 0.05, ∗ for 0.05 ≤ p-value < 0.1.
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Table A.12: Causal Effects for Full Compliers S = sfc (Using Multinomial Logit)

E(Y (tl)− Y (th)|sfc) E(Y (tl)− Y (tm)|sfc) E(Y (tm)− Y (th)|sfc)

Income of Family Head 2.471 ∗∗∗ 0.887 1.585
(s.e.) 0.821 1.179 1.225

(p-value) 0.005 0.453 0.220

Income of Head and Spouse 1.298 1.278 0.021
(s.e.) 0.923 1.371 1.399

(p-value) 0.195 0.350 0.993

Total household income 2.161 ∗∗ 2.780 ∗∗ −0.619
(s.e.) 0.954 1.379 1.423

(p-value) 0.032 0.048 0.668

Above Poverty Line 0.133 ∗∗∗ 0.077 0.057
(s.e.) 0.048 0.069 0.065

(p-value) 0.010 0.275 0.408

Employed without welfare 0.117 ∗∗ 0.096 0.021
(s.e.) 0.051 0.079 0.079

(p-value) 0.023 0.223 0.808

Currently on welfare −0.108 ∗∗ −0.051 −0.057
(s.e.) 0.046 0.069 0.068

(p-value) 0.028 0.462 0.372

Job tenure 0.120 ∗∗ 0.053 0.067
(s.e.) 0.050 0.077 0.079

(p-value) 0.028 0.457 0.398

Economic self-sufficiency 0.076 ∗ −0.044 0.119 ∗

(s.e.) 0.042 0.059 0.057

(p-value) 0.087 0.485 0.067

Neighborhood Poverty −32.893 ∗∗∗ −22.737 ∗∗∗ −10.157 ∗∗∗

(s.e.) 1.150 1.725 1.995

(p-value) 0.000 0.000 0.000

This table evaluates the neighborhood effects for full compliers sfc across several outcomes. The first column lists the outcome
variables. The second column evaluates the causal effect between the neighborhood types of low and high poverty. The third
column compares low versus medium poverty neighborhoods and the last column evaluates the neighborhood effects between
medium versus high poverty types. The results are based on a semi-parametric method that evaluates propensity scores and
response type probabilities using a multinomial logit model. All estimates are conditioned on the site of intervention and account
for the person-level weight for adult survey of the interim analyses (Interim Impacts Evaluation manual, 2003, Appendix B).
Inference is obtained by a bootstrap method that employs a weighted sampling scheme. The p-values are associated with the
double-tailed inference that tests if the estimates are equal to zero. Asterisks indicate the typical p-value thresholds: ∗∗∗ for
p-value < 0.01, ∗∗ for 0.01 ≤ p-value < 0.05, ∗ for 0.05 ≤ p-value < 0.1.
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