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1. Introduction

Sound economic and policy analysis is causal analysis. It analyzes the factors that produce outcomes and the role of various
factors and policies in doing so. It quantifies policy impacts. It elucidates the mechanisms producing outcomes in order to understand
how they operate, how they can be transported to different environments, how programs might be improved, and which, if any,
alternative mechanisms might be used to generate desired outcomes. It organizes evidence in interpretable frameworks. It uses all
available information to give good policy advice and explicitly recognizes any limitations of data or models.

Good economic science systematically explores possible counterfactual worlds. It is grounded in thought experiments — what
might happen if determinants of outcomes are changed. Credible hypotheticals are developed, analyzed, and tested with real-world
data.

Models and thought experiments are central to economic analysis. Persons trained in economic theory or in the natural sciences
routinely use them. Statisticians and computer scientists have only recently come to grips with the causal questions that have long
been investigated by econometric pioneers such as Ragnar Frisch and Trygve Haavelmo. As a result, private languages and procedures
designed to do part of what rigorous econometric models do have been developed without manifesting an understanding of the full
corpus of econometric theory, often refusing to cite it and reinventing portions of it.
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These private languages bear the marks of their recent birth: concepts are often not precisely defined, and the conceptually
distinct issues of definition of counterfactuals, their identification, and their estimation are often tangled together. In some fields
heavily influenced by statistics, certain estimation techniques are claimed to be central for the definition or identification of
counterfactuals when, in fact, they are only devices for recovering counterfactuals from data.

The current state of affairs would be of little concern if applied economists continued to draw on and extend the standard
econometric model. Sadly, this is not the case. Many econometricians and applied economists now emulate what they read in
statistics and computer science journals. They have forgotten or never learned their own field’s foundational work to the detriment
of rigorous causal analysis and testing among alternatives.

This paper discusses econometric causal analysis and recently developed causal models in fields outside economics. Our goal
is to enhance the theory and practice of economic policy analysis by testing and synthesizing evidence, as well as interpreting it.
This involves acquainting economists with a rich econometric legacy and situating recently advocated causal frameworks within the
broader context of the econometric model.?

The topic is broad and our paper is necessarily brief. We discuss some main points and illustrate them with analyses of a few
prototypical economic models used to address policy problems and interpret evidence. It is impossible to convey here all of the
insights of rigorous econometrics developed in the past 90 years.

This paper unfolds in the following way. We first define the notion of causality within a model. The concept is simple, but requires
thought processes outside of statistics that are, nonetheless, quite intuitive. We discuss four distinct classes of policy problems that
are addressed in econometric causal analyses. Some of them are either ignored or only partly addressed in the recent non-economic
causal literatures. We demonstrate the conceptual clarity of the econometric approach and contrast it with that of rival approaches.

In particular, we consider two causal frameworks often advocated by statisticians and computer scientists. The first is the
Neyman-Rubin model (1923; 1958; 1974; 1986; 1996), “NR” henceforward. It uses notions developed in rigorous econometrics but
goes only part way toward implementing the full set of tools in the econometric approach to causal analysis and the interpretation
of empirical evidence. It has important limitations for posing or analyzing routine policy problems outside a narrow “treatment-
control” paradigm. It ignores the simultaneous equations model — a major achievement of econometrics — and replaces it with
a litany of “confounding biases” readily addressed in rigorous econometrics. We also consider an approach to counterfactuals
developed in computer science (“do-calculus”, Pearl, 2012), henceforth “DoC”, that relies critically on directed acyclic graphs (DAGs)
and statistical conditional independence relationships. We demonstrate its limited capacity to address many important economic
questions and address important empirical problems or to utilize many standard econometric estimation and identification tools.

Each of the recent approaches holds value for limited classes of problems. However, they have severe limitations when
applied to the broad array of problems economists routinely confront. The danger lies in the sole reliance on these tools, which
eliminates serious consideration of important policy and interpretation questions. We highlight the flexibility and adaptability of
the econometric approach to causality, contrasting it with the limitations of other causal frameworks.

For instance, the NR approach does not readily accommodate unobservables and restrictions on empirical relationships produced
by economic theory, which are important components of the econometric toolkit. Social interactions, peer effects, and general
equilibrium theory fall outside its purview, and are currently considered frontier-topics in those fields, despite the existence of
well-designed econometric tools that address these issues. These are all standard problems addressed in structural econometrics.

Similarly, the DoC approach cannot deal with the functional restrictions and covariance information routinely used in econo-
metrics. It cannot accommodate assumptions such as monotonicity and separability restrictions, which are essential components
of modern instrumental variable analysis. The prototypical Generalized Roy model cannot be identified with DoC, although it and
more general models can be identified using standard econometric tools.

This paper builds on our previous work in several ways. Heckman (2008a) and Heckman and Pinto (2015) discuss econometric
causality but are less explicit than this paper in establishing links between formal econometric models and competing approaches.
We clarify the distinctions between the “do” operator of Pearl (2009a) and the “fix” operator of Haavelmo (1943) and exposit
much more clearly why causality is such a difficult concept for statisticians.®> We introduce a new hypothetical model that uses
probabilistic tools to analyze causal models without the artifices required in competing approaches. For example, we disentangle
the “SUTVA” assumption of the Neyman-Rubin model into an autonomy (structural invariance) assumption and an absence-of-
general-equilibrium-effects assumption.* We provide concrete examples of the limits and benefits of alternative causal frameworks.

This paper is organized as follows. Section 2 defines causality and discusses the tasks of causal inference. Section 3 presents the
econometric model. Section 4 shows its versatility and describes various identification approaches in the Generalized Roy model.
Section 5 examines the Neyman-Rubin causal model and contrasts it with the econometric approach. Section 6 investigates the
Do-Calculus of Pearl (2009a). Section 7 examines non-recursive models that are ruled out in the NR approach. Section 8 summarizes
the paper.

2 In this paper we focus on policy analysis but our message applies to a broader class of problems. The models developed in this paper also apply to the
tasks of hypothesis testing, statistical inference, and synthesis of empirical evidence into interpretable evidence. Formulating meaningful alternatives is central
to power analysis or Bayesian tests among alternatives.

3 We note that Haavelmo (1943, 1944) never uses the term “fix” in his analyses. However, he introduces the notion of thought experiments in his 1943 and
1944 papers, referring to them as idealized experiments. In his 1943 paper, he discusses the “hypothetical splitting” of the real economic world into separate
spheres of action. His example is a Keynesian consumption and investment function where he separates-hypothetically-consumer and producer actions in the
context and investment are jointly determined. Haavelmo was a student of Ragnar Frisch, who defined the term econometrics and laid the foundations of
econometric causal policy analysis in two foundational studies (Frisch, 1930, 1933). Haavelmo (1944) refers extensively to Frisch’s work and later essays on
policy evaluation. He is credited with formalizing Frisch’s distinction between hypothetical worlds (models) and empirical data. See also Bjerkholt and Dupont
(2010) and Frisch (1933).

4 The do-calculus explicitly uses autonomous structural relationships (Pearl, 2009a).
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2. Causality as a thought experiment

A formal definition of causality relies on a modification of the same thought process used to define relationships mapping inputs
X, that may contain unobserved terms, to outcomes Y using a stable map g:

g:X—>Y 1

A map is stable if changing its arguments over the domain of X preserves the map. Another way to express this is Y = g(X), where
g may be a multi-valued correspondence. An elementary version of (1) is the linear model:

Y=a+pX. (@)

In this example, stability means that « and # do not change when X is changed. This invariance property is termed autonomy of
relationships by Frisch (1938). It is a cornerstone of causal analysis.® Typical examples of autonomous relationships in economics
are production functions or demand equations.

A second fundamental concept in causality is directionality. The map g states that X causes Y. Inverting this map (when possible)
may produce a stable relationship, but it is, in general, not causal.

The range of Y is a set of potential outcomes associated with X over its domain. The map g may be either a function or a
correspondence. For example, our analysis is applicable to settings such as Nash games with multiple equilibria.® Counterfactual
outcomes Y (x) refer to the potential values that Y takes across different values of X. The key idea in causality is the notion captured
in Alfred Marshall’s phrase, “ceteris paribus” — all other else being equal.” Comparisons of Y for different values of X — all other
factors the same — are defined as causal effects. They are conceptual thought experiments. This definition is used explicitly in the
econometric approach regardless of what is observed, the statistical properties of X and Y, the specification of functional forms for
g, or how X is manipulated in any thought experiment. The Roy model (1951) is an early example of a model of two potential
outcomes associated with the income that the same person would earn in different jobs. We use a generalization of it as an example
prototypical model throughout this paper.

Issues of identification and estimation are important for making the concept of causality empirically operational, but not for
defining it. However, these auxiliary issues are sometimes assumed to be paramount in defining causality in the recent non-economic
literatures. For example, in an influential exposition of the Neyman-Rubin model, Holland (1986) insists that causal effects are only
defined for experimental manipulations of X. However, issues of definition and estimation are fruitfully distinguished and are the
hallmark of the econometric approach. To make our discussion more concrete, an example from the standard toolkit of empirical
economics is helpful.

2.1. Regression: Conditional expectation or thought experiment?

Consider the standard workhorse of empirical economics.® Anticipating empirical applications, we add the distinction between
observed and unobserved variables that is strictly not required for the definition of causal parameters. Consider the regression of Y
on T where (Y, T) are observed and U denotes a variable that is not observed by the analyst:

Y=TB+U. ©)

In terms of (1), X = (T,U). If X is a vector of all possible causes of Y, (1) is an all-causes model and accommodates stochastic
shocks. Coupled with stability, such a model is convenient for transporting (1) to environments where different levels of T are at
play (forecasting) or in combining and summarizing evidence from different studies where T varies (research synthesis).

A major source of confusion about causal models is that (3) is often defined by statisticians as a model for describing statistical
relationships between Y and T (see e.g., Pratt and Schlaifer, 1984; Holland, 1997). Doing so uses standard statistical tools to define
empirical relationships. Note that if conditional expectations exist, E(Y | T =1) =tf + E(U | T = 1). In this approach, the statistical
model could be equivalently defined as U =Y — T5.

The empirical association between T and Y operates through two channels: g and E(U | T = t), unless T is mean independent
of U. This approach introduces considerations about the properties of random variables that are unnecessary for defining causality
in contrast to just defining an empirical regularity.

2.2. Thought experiments

Another way to interpret Y = T + U is to hypothetically vary T and U: (T,U) —» Y via Y = Tp + U. This is not a statistical
operation and lies outside standard statistics.” Economists (and other scientists) use hypothetical models (thought experiments) to
analyze phenomena and explore possible relationships. These and other possible relationships are defined by causal operations,
although they are estimated using statistical methods.

5 Frisch (1938) defines autonomy of a function to mean functions that are “invariant” to changes in their arguments. Hurwicz (1962) prefers the term
“structural” to denote autonomous equations.

6 See e.g., Mas-Colell et al. (1995), Tamer (2003).

7 Marshall (1961).

8 See Haavelmo (1943) for an early discussion of the distinction made in this section.

9 For an example of how confusing this concept is to statisticians, see Pratt and Schlaifer (1984) and Holland (1997). Holland’s confusion is significant given
that he was the person who formalized the “Rubin model” (1986).
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To clarify these ideas, it is helpful to introduce random variables ¢, e, ¢; which are unobserved (by the analyst) and mutually
statistically independent. They are external to the model (exogeneous) and are not caused by T, U or Y.

Example 2.1. Consider four different possible causal models — all thought experiments:

Causal Model 1 Causal Model 2 Causal Model 3 Causal Model 4
T = fr(er) T = frer.ey) T = frler,U) T = fr(er)
U=fu(€(/) U=fu(euyev) U=fu(eu) U=fu(eu»T)
Y=Tp+U Y=Tp+U Y=Tp+U Y=Tp+U

In the first causal model, T does not cause U, nor does U cause T. Parameter f is the causal effect of varying 7 on Y for a fixed
value of U. Variables T and U are statistically independent and the parameter § can be consistently estimated by OLS. In the second
causal model, T does not cause U, nor does U cause T. Parameter f is still the causal effect of T on Y. However, T and U are not
statistically independent because they share a common confounding variable ¢, and the OLS estimator of § is biased. This model
is sometimes called a “common cause” model with ¢, being the common cause of T and U. The third causal model differs from
the second model because U causes T. Although the causal relations of the second and third models differ, the causal effect of T
on Y remains f. In these models, T and U are not statistically independent and the OLS estimator is generally biased.'’ The fourth
model describes the case where T causes U. In this case, the OLS estimator of the parameter  does not, in general, describes the
causal effect of T on Y since we need to account for the effect of 7 on Y that operates through U. The OLS estimator is biased and
it evaluates a combination of the direct effect of T on Y and the indirect effect of T on Y via U.

Using the standard regression model as a starting point blurs the logic of this thought process. Econometrics textbooks commonly
introduce causality in the context of the linear model (3). In this approach, the identification of causal effects is often reduced to a
statistical property of the econometric model, namely, that causal effects can be assessed when variables T and U are uncorrelated.
It gives rise to the practice of defining causal effects as conditional probability statements instead of statements about manipulating
variables in a thought experiment.

In fact, OLS is based on statistical assumptions that are void of any causal interpretation. The OLS fitted value for the outcome
Y conditioning on 7 =t evaluates the conditional expectation E(Y | T =) instead of the counterfactual expectation E(Y(¢) | T = 1),
where the counterfactual outcome Y (¢) is the value of Y when T is externally set to a value ¢. The causal content of the OLS model
arises only when we invoke concepts such as fixing and counterfactuals. These concepts are not part of the standard statistical
toolkit. Whether or not we can identify § in a sample is an entirely separate question from defining the causal impact of 7 on Y.

Frisch, the founding father of modern econometric causal policy analysis, clearly understood that the study of causality is an
exercise in abstract thought, and that “Causality is in the Mind”:

“...we think of a cause as something imperative which exists in the exterior world. In my opinion this is fundamentally wrong.
If we strip the word cause of its animistic mystery, and leave only the part that science can accept, nothing is left except a certain
way of thinking. [T]he scientific ...problem of causality is essentially a problem regarding our way of thinking, not a problem
regarding the nature of the exterior world”. — (Frisch, 1930), p. 36

Stated differently, Frisch is saying causality is the outcome of a thought experiment, i.e., a model.
2.3. The econometric approach to causality

The econometric approach to causality develops explicit hypothetical models where inputs cause outcomes. A common context
is the study of policy evaluations when economic agents choose treatments that affect economic outcomes of interest. “Treatments”
are inputs (the 7') which need not be restricted to binary or discrete valued variables. The mechanisms governing the choice of
inputs are central to the study of the causal effect of treatment on outcomes. Identification/estimation/interpretation of empirical
counterparts to the hypothetical counterfactuals require careful accounting of unobserved (by the analyst) variables (U) that cause
both input choice and outcomes. Structural econometric models do just that.!!

2.4. Four distinct policy questions

The econometric approach to causality distinguishes four distinct classes of policy problems and addresses each of them,
sometimes in the same analysis.'?

P1 Evaluating the impacts of implemented interventions on outcomes in a given environment, including their impacts in terms of the well-being
of the treated and society at large. The simplest forms of this problem are typically addressed in the non-economic literatures: does
a program in place “work” in terms of policy impacts?

10 Thus, Y(r) 1L T|U holds for the third model but not for the second model.

11 Caricatures sometimes made in the non-economic literatures that the choices of inputs 7' involve highly stylized rational choice models or perfect information
are false (see, e.g., Morgan and Winship, 2015). Some hypothetical models might maintain those assumptions, but such assumptions are in no way essential to
the enterprise.

12 See Heckman (2008a).
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The non-economic literatures addressing P1 identify and estimate treatment effects (most often average treatment effects) without
investigating how they arise or whether alternative programs might be better or even what “better” means. In terms of our linear
equation example, it seeks to know the sign and magnitude of g. However, most economic and policy analysts seek greater generality
for their findings. This leads to problem P2.

P2 Understanding the mechanisms producing treatment effects and policy outcomes.

This asks the analyst to investigate the causes of effects and is a central task of economic theory and policy analysis.'® It
embeds (3) in a model that explains how T operates (i.e., which factors explain the Y — T relationship). It goes beyond the coarse
description of “treatment” T to explicate the factors that produce Y. It links with P3 and P4 stated below to consider how alternative
mechanisms generate observed outcomes and can be used to forecast policies going forward, or explain the findings of any given
study in a particular environment. P2 is also an integral part of the task of constructing alternatives to maintained hypotheses and
interpreting evidence using economic models.

P3 Forecasting the impacts (constructing counterfactual states) of interventions implemented under one environment when the intervention
is applied to other environments, including their impacts in terms of well-being.

This goes beyond P2 to interpret why outcomes vary among environments. It replaces crude meta-analysis of treatment effects
with principled explanations of mechanisms and their impacts and extrapolates mechanisms to other environments to answer P1 in
those environments.'* Structural models are useful vehicles for summarizing evidence from multiple studies.'® Forecasting in new
environments is a traditional problem in econometrics (see, e.g., Theil, 1958; Hamilton, 2000; Chatfield, 2000). However, the truly
ambitious problem addressed by policy analysts is P4.

P4 Forecasting the impacts of interventions (constructing counterfactual states associated with interventions) never previously implemented
to various environments, including their impacts in terms of well-being.

This is a fundamental challenge addressed in econometric policy analysis. This problem motivated the creation of econometric
causal models.'® It is also a central feature of the scientific analysis of empirical regularities.

One impetus for the econometric structural approach was to conduct policy analysis for the post-World War II era using models
fit on data from the pre-World War II Depression era. Econometric policy analysis is the vehicle for framing and addressing the likely
impacts of new policies and new environments, never previously experienced. Marschak (1953) provides an insightful discussion
of this task in the context of forecasting the impact of new economic policies using data collected in environments in which the
proposed policies were not in place.!” The often-cited “critique” of Lucas (1976) updates Marschak’s policy analysis to stochastic
environments. McFadden (1974) is a Nobel-Prize winning example of how a leading economist who successfully met this challenge
in forecasting the demand for a new transportation system in the San Francisco Bay area.

The econometric approach distinguishes three tasks of econometric causal policy analysis. These tasks are described in Table 1
and are often conflated in the non-economic statistical literatures.

Table 1
Three distinct tasks in econometric causal analysis.
Task Description Requirements Types of analysis
1: Model Creation Defining the class of A scientific theory: A Outside Statistics;
hypotheticals or purely mental activity Hypothetical Worlds

counterfactuals by thought
experiments (models)

2: Identification Identifying causal Mathematical analysis of Probability Theory
parameters from point or set identification;
hypothetical populations this is a purely mental
activity
3: Estimation Estimating parameters Estimation and testing Statistical Analysis
from real data theory

Our regression example illustrates these distinctions. Models for counterfactuals do not necessarily require any statistical analysis.
Identification is a separate issue required to recover g from hypothetical model distributions of data where statistical variation is

13 Holland (1986) features the narrow goal of investigating the “effects of causes” in his definition of the Neyman-Rubin model.

14 Recent work in computer science has begun to reinvent the logic of econometric forecasting using its own colorful private language but without any fresh
insights or acknowledgment of a large body of econometric thought (see, e.g., Bareinboim and Pearl, 2016).

15 See, e.g., Bursztyn and Yang (2021), Nerlove (1967), or Mullins (2024).

16 See Frisch (1930, 1933, 1938) and Tinbergen (1930).

17 Knight (1921) succinctly states the problem and its solution in his enigmatic remark, “The existence of a problem of knowledge depends on the future being
different from the past, while the possibility of a solution of the problem depends on the future being like the past.” Knight meant that analysts use ingredients
estimated on historical data to construct forecasts of the unknown. This is a task that involves judgments and insights about invariant mechanisms beyond
straight applications of fitted statistical models.
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not an issue.'® Estimation, on the other hand, considers how to recover model parameters from empirical sampling distributions
where statistical variation is a concern. Trygve Haavelmo, a student of Frisch, developed an empirically operational econometric
framework for causal analysis that distinguished these three tasks (1943, 1944).

3. Econometric causal models

Econometric causal models are flexible frameworks that can be used to address a variety of economic policy problems that are
not naturally squeezed into simple “treatment-control” frameworks. They go well beyond the narrow treatment effect literature to
address the following topics listed in Table 219 :

Table 2
Problems addressed by econometrics.

(a) Investigate the causes of effects, not just the effects of causes — the goal of the treatment effect literature
announced by Holland (1986) in defining the “Rubin model;”

(b) Interpret empirical relationships within economic choice and outcome frameworks;

(©) Analyze data using a priori information from theory;

(d) Account systematically for shocks, errors by agents, and measurement errors;

(e) Analyze dynamic models;

® Accommodate multiple approaches to identification beyond randomization, instrumental variables, and
matching that exploit restrictions within and across equations on causal relationships produced by theory;

(€3] Exploit restrictions across equations and unobservables within and across equations to identify causal
parameters;

(h) Make forecasts in new environments;

@) Synthesize evidence across studies using common parameters embedded in common conceptual frameworks
rather than crude statistical meta-analysis;

Q)] Make forecasts of new policies never previously implemented; and

k) Analyze interactions across agents within markets and also within social settings (general equilibrium and
peer effects).

Econometric methodology for establishing causality is comprehensive and adaptable, as it is specifically designed to address a
wide array of causal questions pertinent to economics. In contrast, alternative causal frameworks are often not conceived with the
specific investigative needs of economists in mind. Consequently, these methods are typically tailored to address only a specific
subset of causal questions, primarily focusing on the application of a limited range of techniques to specialized categories of
problems, predominantly those within the problem class P1.

Alternative methodologies, such as the NR approach, can be highly effective in analyzing causal effects such as average treatment
effects or the effect of treatment on the treated within the contexts of Randomized Controlled Trials (RCTs). However, their utility
becomes markedly constrained when addressing the more complex causal questions mentioned in Table 2. This is a consequence of
Marschak’s Maxim (Heckman, 2008a) that for certain narrowly focused problems, special versions of the econometric approach are
highly effective. One need not necessarily implement more general models that address a wider set of questions when addressing
specific focused problems. However, such models are, by design, of limited value in addressing wider classes of problems. We now
state the econometric model formally using the convenient tool of graph theory that is widely used in many branches of applied
mathematics.

3.1. Causal framework

Heckman and Pinto (2015) develop a causal framework that formalizes Frisch’s insight that causality is the outcome of a
thought experiment and places Haavelmo’s approach (1943, 1944) in the framework of more recent policy evaluation models. They
distinguish an empirical model that generates the observed data from a hypothetical model that formalizes the thought experiments
of manipulating inputs that define causality. The empirical model describes the data generating process. The model differs from
the hypothetical model, which serves as an abstract thought experiment. They establish the definition and operationalization of
causality within a probabilistically coherent framework, eliminating the need for special rules or procedures designed to delineate
causality, a necessity often found in non-economic literature.

Some notation is useful in describing the framework. We borrow it from the literature in applied mathematics. Dawid (1979) is
a major source of conditional independence relationships. Lauritzen (1996) is a concise treatment of the graph theory we use.

3.2. A causal model

A causal model M is a system of policy-invariant (autonomous) structural equations like (1) that characterize the mapping
M : T — P(T) between a set of variables 7 and its power set P(7). Elements in 7 are random variables or random vectors that may
be observed or unobserved by the analyst. It is convenient to define the set £ = {ex; K € 7'} that contains an error term e for each
K € T. Error term ey shares the same dimension as K. This variable is assumed present even if there are additional unobserved

18 Lewbel (2019) and Fisher (1966) are definitive treatments of identification in economics.
19 Table 2 is only a partial list of the rich array of problems addressed by the econometric approach.
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variables. Error terms are mutually independent and independent of the other externally-specified system inputs. They enable us to
avoid degenerate random variables, so standard tools of probability theory can be used.

A structural equation for a variable K € 7 is an autonomous function denoted by fx : (IM(K),ex) — RIXl. Variables in IM(K)
are said to directly cause K. In recursive formulations, a variable cannot directly cause itself, that is, K ¢ M(K) for all K € 7. We
relax recursivity in a later section, where we discuss simultaneous equations models in which sets of outcome variables are jointly
determined.

A variable T not caused by any variable, so M(T') = @, is called external. In this case, its structural function is given by T' = f(ep).
Error terms are externally-specified (i.e., exogenous). This means that error terms in set £ are not caused by any variable in 7. We
impose, without loss of generality, that error terms are mutually statistically independent.?® All variables are defined on a common
probability space (Z, F, P), using standard notation for ¢ - algebras.

3.3. The generalized Roy model

We use the Generalized Roy model as our leading example of a structural model. It is a cornerstone of the literature in applied
economics and policy evaluation.?! The original Roy model of counterfactuals (1951) analyzed earnings inequality in two sectors of
the economy. All persons have two potential incomes: Y (0) in Sector 0 and Y (1) in Sector 1. Agents choose sectors based on their
perceived net benefit I. In the simplest case, the benefit is the income gain I = Y(1)—Y (0). More general models allow for costs, like
tuition, migration costs, and psychic costs of participation. Potential incomes (Y (0), Y(1)) depend on observed variables X, while
benefit I may depend on Y(1),Y(0), and X and an externally specified variable Z, which may be policy variables that influence
participation costs. The agent’s choice of sector is given by T' = 1[/(X, Z) > 0]. The model has been generalized to analyze multiple
sectors and dynamic discrete choices (see Abbring and Heckman, 2007; Heckman and Vytlacil, 2007a,b).

The most common form of the model is:

Y()=g(X)+U, @
Y(0) = go(X) + Uy ®
C=g.(Z,X)+U, (6)
T=1[Y(1)-Y(©0)—-C >0]. @

g1, 8, and g, are autonomous functions. The variables X are observed and cause the outcome and choices. Variable Z serves as
an instrumental variable. It is not an argument of the outcome equations. Variables U, U, and U, are exogenous and unobserved
variables that are statistically independent of Z, X, namely, (U;,U,.U,) 1L (X, Z).** Choice theory, as embodied in (7), helps in
determining relevant variables Z which can serve as instrumental variables.

The individual level treatment effect is Y (1) — Y(0). The evaluation problem arises because for each person we observe either
Y (0) or Y (1), but not both. We observe Y(1) if T=1and Y(0) if T =0, namely Y =T - Y(1) + (1 - T) - Y(0).**

Z affects Y only through its influence on T. The typical analysis reformulates the analysis at the population level rather than
at the individual level. A common parameter of interest is the average treatment effect ATE = E(Y(1) — Y(0)) which is the mean
treatment effect across all agents. Treatment on the treated focuses on TOT = E(Y(1) — Y(0)|T = 1). The probability distributions
of the counterfactual outcomes Y (¢);¢ € {0, 1} are sometimes investigated.

The Generalized Roy model has been extended in many ways.>* The model is systematically ignored in the non-economic
literatures, despite its intellectual priority and relevance.”> The Generalized Roy model allows for multiple choices. It can account
for subjective evaluations of the benefits of each choice by subsuming variables U, U, U,, in an unobserved random vector V that
causes both 7 and Y (see Heckman and Vytlacil, 2007b,a; Heckman and Pinto, 2018).

A simple yet general representation of the Generalized Roy model comprises four random variables 7 = {Z,V,T,Y}, where Z
is an instrumental variable that causes an outcome Y only through its effects on a treatment choice 7. The variable V' denotes an
externally-specified (exogenous) and unobserved confounding variable that causes both T and Y.?° In the context of the Generalized
Roy model, Z stands for external policy or “shifter” vectors. V is a source of selection bias as it induces covariation between choice
T and outcome Y that is not due to the causal effect of the treatment T on the outcome Y. For now, we suppress the X variables
for the sake of notational simplicity.

Table 3 displays four equivalent representations of the Generalized Roy model.

20 The independence among error terms comes without loss of generality as any dependence structure could be modeled via other unobserved variables in 7.

21 gee, e.g., Heckman and Vytlacil (2007b,a), Heckman and Taber (2008).

22 This independence relationship may also take the form of the conditional independence (U,,U,,U,) 1L Z|X..
23

24

This switching regression relationship was first used by Quandt (1958). See also Quandt (1988).
For instance, Heckman and Vytlacil (2007a) investigate multiple versions of the original model. Heckman et al. (2008) extend the model to ordered
and general unordered choice models. Heckman and Pinto (2018) and Lee and Salanié (2018) investigate the case of unordered multiple choice models with
multi-valued treatments. Abbring and Heckman (2007) consider dynamic discrete choice models in this framework.

25 See e.g., (Pearl, 2009a, 2012; Rubin, 1974, 1978; Holland, 1986; Imbens and Rubin, 2015).

26 Choice T may be binary, discrete or continuous and the confounder variable V' can denote a random vector of arbitrary dimension.
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Table 3
Representations of the Generalized Roy Model.

Variable Map Structural Eq. DAG LMC
zZ | M2)=0 Z=fyey) ZUV|p
vV | M) =0 V= fyley) V1 Z|@
T MT)=1{Z,V} T =fr(Z,V,er) TUg|(ZV)
Y MY)=({T,V} Y = fy(T,V,ey) Y WL Z|(T,V)

The first column of Table 3 lists the variables of the Roy model. The second column describes the causal model as a mapping
of the variable set. The third column displays the corresponding structural equations. The fourth column displays the model as a
Directed Acyclic Graph (DAG), where arrows denote causal relationships, circles denote unobserved variables, and squares denote
observed variables.?”” To avoid clutter, we keep the ¢ implicit.

The last representation of Table 3 uses a property called the Local Markov Condition (LMC).”® Some notation is necessary to
state the condition. The language of Bayesian networks uses the term parents of K for the variables that directly cause K, that is
IM(K). Children of K comprise the variables directly caused by K, namely, Ch(K) = {J € T;K € M(J)}. The descendants of a
variable K, D(K), include all variables that are directly or indirectly caused by K. These include all the subsequent iterations of the
children of K.?° A causal model is recursive (acyclic) if no variable is a descendant of itself, that is, K ¢ D(K).

The LMC is a property of recursive models stating that a variable is independent of its non-descendants conditioned on its parents.

LMC : K 1L (T \ D(K))|M(K) (8)

For instance, outcome Y has no descendants and its parents are {}/,T}. Thus its LMCis Y 1L Z | (T, V), as listed in the last row
of Table 3. Z has no parents and its descendants are T, Y. The set of LMC for all variables in 7 fully characterizes the causal model.
Additional independence relationships may be generated by the Graphoid Axioms®® of Dawid (1976) or through graphical methods
such as the d-separation criteria of Geiger et al. (1990).

3.4. Counterfactual approaches: Formalizing Frisch’s insight

Frisch’s statement that “Causality is in the Mind” means that the causal analysis of treatment T relies on a thought experiment
that assigns values to the treatment variable in a fashion external to the system analyzed. This hypothetical manipulation of T affects
only the variables caused by T. Specifically, changing T affects its descendant Y but not its ancestors V, Z.

Frisch’s thought experiment is conceptually simple. However, it is a causal operation outside the scope of statistical theory. In
statistics, random variables are fully characterized by their joint distributions. This information by itself is insufficient for causal
analysis as it lacks directionality — a central feature of causal models. Frisch’s thought experiment uses additional information on
causal direction when it partitions the variables studied into those caused by T and those that are not.

Frisch’s thought experiment was formalized through the use of the “fix” or “set” operator implicit in the seminal work
of Haavelmo (1943). Counterfactual outcomes are obtained by the hypothetical (external) manipulation of the targeted variable
that causes the outcome of interest. In the Roy model, the counterfactual outcome Y(¢) is obtained by fixing the T-input of the
outcome equation to a value ¢ € supp(T) so that Y(r) = fy(t,V,ey). Fixing affects only the outcome equation. It substitutes the
treatment random variable T by the treatment value r. It makes all descendants of T' functions of the fixed value of T = ¢. It does
not eliminate the equation for T from the causal model nor does it modify the choice equation T = f;(Z,V,ep).

The do-operator of Pearl (1995, 2012) operates in a fashion similar to fixing as it substitutes all T-inputs from structural equations
of the variables directly caused by T. The do-operator differs from fixing by deleting (“shutting down”) the structural equation for

27 We refer to Lauritzen (1996) for background on DAGs and Bayesian Networks.

28 gee Kiiveri et al. (1984), Pearl (1988) for further information on the Local Markov Condition.

29 Notationally, for any subset 7 c 7, let Ch(7) be the union of the children of all the variables in 7, that is, Ch(7) = Uke7 Ch(K). The descendants of K
is the smallest set ID(K) C 7 that contains the children of K, Ch(K) c D(K), and its own children, Ch(ID(K)) = D(K).

30 Dawid (1976) defines Graphoid Axioms as consisting of six rules that apply for any disjoint sets of variables X, W,Z,Y C T :

(A) Symmetry: XUY|Z=>Y1LX|Z

(B) Decomposition: XULW,Y)|Z=>XL1Y|Z

(C) Weak Union: XULWY)|Z=>XULY |(W,2).
(D) Contraction: XUW|(,Z)yand X LY |Z=>X L (W,Y)|Z.
(E) Intersection: XUWI|({{,Z)yand X LY |(W,Z2)=> X LL(W,Y)| Z.
(F) Redundancy: XUY|Z=>X1UY|Z.
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the treatment variable T, which effectively suppresses the determining equation of random variable T from the causal model and
replaces it with a fixed value T = r that affects all descendent relationships. Eliminating this equation excludes the possibility of
defining parameters like TOT that condition on T.

Neither fix nor do are well-defined in statistics. They are causal operators that only affect the distribution of the descendants
of the variable being fixed. In contrast, statistical conditioning affects the distributions of all variables that are not statistically
independent of the conditioning variable. Fixing T in the Roy model affects the outcome Y but does not impact the confounder V'
or the instrument Z, which remain statistically independent. Conditioning on 7', on the other hand, alters the distributions of Z
and V, which are no longer statistically independent.

Heckman and Pinto (2015) develop a causal framework that expresses the causal operations of fixing or doing in a framework
using standard statistical tools. They distinguish the empirical model that generates observable data from a hypothetical model that
is used to formulate the thought experiments involving the manipulation of inputs determining causality. The hypothetical model
is an abstract model (thought experiment) that shares the same structural equations and the same distributions of error terms as
the empirical model. It differs from the empirical model by appending a hypothetical variable T that replaces the T-input affecting
descendants of T. The hypothetical variable captures the causal notion of an external manipulation of treatment. The hypothetical
model operates downstream of T and translates the causal operation of fixing T into the statistical operation of conditioning on 7.

Notationally, we use 7,, &,, M,, P,, E, for the variable set, error terms, causal model, probability, and expectation of the empirical
model, while 7, &,, M,, P,, E, denote the counterparts in the hypothetical model. The hypothetical and empirical models are
related in the following fashion: (1) the hypothetical model has an additional variable T, T, =T,U {T'}; (2) the hypothetical variable
causes all descendants of 7', IM,(K) = (IM,(K) U {f}) \ {T} for all K € D,(T); (3) variable T has no descendants in the hypothetical
model, that is, D,(T) = @; (4) all remaining causal relations stay the same, that is, IM,(K) = IM,(K) for all K € T, \ {D (T) U {T}}.

It is useful to illustrate these ideas using the Generalized Roy Model. For notational clarity, we use IM, for the empirical (original)
model, My, for the model that applies the fix-operator, M, for the do-operator, and IM,, for the hypothetical model. We also use
the subscripts e, fix, do, h for the probability distributions, expectations associated to each model. Table 4 displays the Roy model
for each of these frameworks.

The first column of Table 4 presents the original empirical model. The second and third columns present the models generated
by the fix and the do operators respectively. Both models constrain the T-input of the outcome equation by a value ¢ € supp(T). The
main difference between these models is that fix retains the equation for treatment while do suppresses it. The hypothetical model
is displayed in the last column of Table 4. It replaces the T-input of the outcome equation with an external hypothetical variable T.

The first panel presents the structural equations of each approach. The second panel displays the models as DAGs. The third panel
describes the independence relationships generated by each causal model, and the last panel of the table presents the factorization
of the joint distribution of the model variables. We use P, for the probability distribution of the empirical model, Py, for the model
generated by the fix operator, P,, for the do operator and P, for the hypothetical model. The factorizations differ according to the
number of variables and causal relations of each counterfactual model.

The empirical (IM,), fix (]M/,-x), and hypothetical (IM,) models share the same distributions of error terms ¢, ¢, ey, ¢y. Therefore
the joint distribution of non-descendant T, that is (V, Z), is the same across these models. The do model eliminates the error term
er, and the distribution of T is not defined.

The structural equation for the counterfactual outcome Y(7) in the fix or do models depends only on V and e, and thus the
models have the same distribution of Y(¢). The hypothetical variable T enables us to circumvent the necessity of introducing a
special causal operator. The variable has no parents and, according to the LMC (8), it is independent of all its non-descendants,
T 1L (T,V, Z). In particular, T 1L T always holds for any hypothetical model M, T is also statistically independent of error terms
€7,€r, €y, €y, and the counterfactual outcome is obtained by simply conditioning on T. In summary, we have that:

(11720, £(r0),,, £ (00),,.

ix

It is also the case that Eq. (9) holds when conditioned on any variable K that is not a descendant of T, namely, Z,V and T.

To fix ideas, let T be an indicator of college graduation and Y denote adult income. Treatment-on-the-treated (T'OT) is the
average causal effect of college on income for those who choose to go to college (T = 1), which is TOT = Ef,-XN(Y(l) -YO) | T=1)
using the fix operator. The parameter is equivalently described using the hypothetical model as TOT = E,(Y |T = 1,T = 1)— E,(Y |
T =0,T = 1). The do operator excludes the treatment variable T, which poses a challenge in defining the TOT parameter. Shpitser
and Pearl (2009) solve this problem by incorporating an additional special structure to their counterfactual model.

Eq. (9) may suggest that the way that counterfactuals are expressed is of little relevance in the study of causality. That assessment
is quite misleading. Seemingly small differences in characterizing counterfactuals have significant consequences for the machinery
used to identify causal effects. Section 6 illustrates the difference between an identification analysis using the do-calculus and an
identification analysis using the hypothetical model framework. Section 5 compares identification in NR with identification in the
structural model.

3.5. Identification of counterfactual outcomes

We next consider Task 2 in Table 1. Counterfactuals are said to be identified if they can be expressed in terms of the observed data
generated by the empirical model IM,. This task requires us to connect the probability distribution (or expectation) of counterfactual
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Table 4

Generalized Roy Model: Approaches to generating counterfactuals.

Empirical Models

Hypothetical Model

‘ ‘ Empirical Model (IM,)

Fixing T at + (M,;,) ‘

Doing do(r) (IM,)

Hypothetical Model (IM,,)

Structural Equations

14 V= fy(ey) V= fy(ey) V= fy(ey) V= fy(ey)
Z Z = f(ez) Z = f(ez) Z = fz(e7) Z = f(ez)
T T = fr(Z,V,ep) T=fr(Z,V,ep) do(T =1) T=fr(Z,V,ep)
Y Y =fy(T,V,ey) Y() = fyt,V,ey) Y() = fyt,V,ey) Y =~fy(T, V,ey)
T = f7(e7)
| | Directed Acyclic Graphs (DAGs)
O
| | Local Markov Conditions
|4 viuz viuz Vv uz VJ.L(Z,T)
z ZUv Z 1L (V,Y(t) Z 1L (V.Y () zZ U Ww,y,T)
T TU@|(Z,V) TULYDN(Z,V) (not defined for the models without 7)) T 1L (f, iz, v)
Y Y 1L Z|(T,V) YO W (Z,T)|V Y)W Z|v Y W (Z,T)| (T, V)
T (not defined for the models without 77) (not defined for the models without 77) (not defined for the models without 77) TU(T,V,Z)
| | Factorial Decomposition of the Joint Probability Distributions
PY.,T,V,Z)= Pf,X(Y(t),T, V.,Z)= P, Y1), V.,Z)= P,(Z, V,T,i Y)=
P.Y|T.V)P(T|Z,V)P.(V)P.(Z) P YOIV Py (TIV, Z2) Py (V)P (Z) Py, YOIV Py, (V)P (Z) P,(Y|T.V)P(T|Z,V)P,(V)P,(Z)P,(T)

Subscript e denotes empirical (original) model. Subscript fix denotes the model that uses the fix operator, that is when treatment 7 is fixed to .
Subscript do denotes the model that employs the do-operator. Subscript & denotes the hypothetical model. Notice further that Z and V' are externally specified so that P,(Z) = P;;(Z) = P,;,(Z) = P,(Z) and

P(V) = P (V) = Py, (V) = Py(V).
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variables with the population distributions of the empirical model. The mechanics for establishing this connection depend on which
causal model is used to describe counterfactuals.

First consider the fix operator of model M;, in Table 4. The LMC of Y(r) in M, implies that:
Y() LTV, (10)

Eq. (10) states that the counterfactual outcome Y (¢) is independent of the treatment variable T conditional on the confounding
variable V. This relationship is an example of a matching condition. It helps identify treatment effects as it connects the counterfactual
outcome Y(r) in M, with the empirical model M, :

Prix(YO1V) = Prx (YOI T = 1,V), an
=Py, < Y UT=aY()|T- t,V) : a2)

tesupp(T)
:Pf,.x< > l[T:t]fy(t,V,ey)lT—t,V>, 13)

tesupp(T)
=P (fy(T.V.ey) | T —1.V), (14)
=P,(Y|T-1V). 15)

Egs. (11)~(15) use structural equations to express the probability distribution of the counterfactual outcome Y (¢) in M;;, with the
distribution of the outcome Y in empirical model IM,. The first equation (11) is due to the matching condition (10). Egs. (11)-(14)
apply the definition of the structural equations. The last equation (15) uses the fact that variables 7', V, ¢y share the same distribution
in both models M;, and IM,.

The hypothetical model IM,, offers criteria that enable analysts to connect the counterfactual and empirical distributions in a
systematic manner. For any disjoint set of variables Y, W in 7, \ {T.,T} and any values 7’ € supp(T) we have that:*

YJ.LT|(T,W):>Ph<Y|T=t,T=t’,W)=P,,(Y|T=r’,W)=Pe(Y|T=z’,W), (16)
YJ.I_T|(T,W):;»Ph(Y|T:t,T:t’,W>:P,,(YlT:t,W):PL,(YlT:t,W). a17)

Egs. (16)—(17) state two conditions that involve independence relationships in the hypothetical model. They state that we can
switch from the hypothetical to the empirical model whenever the hypothetical model yields the independence relationships (16)
and (17).>? The application of these rules is simple. For example, the LMC of Y in IM,, of Table 4 generates the following matching
condition:

Y LTIT,V). (18)

Thus, according to (17), we have that P,(Y | T=tV)= PY|T=tV).

The hypothetical framework gives a systematic approach for connecting hypothetical and empirical models. The framework
employs additional structure beyond what is obtained from fixing that might not be required in analyzing the simple Roy model.
Section 6 explores more complex models where the additional complexity of the hypothetical framework is warranted.

The do operator does not generate a matching condition such as (10) or (18) because the equation for treatment T is absent.
Instead, the do-calculus of Pearl (2009a) checks for matching conditions using a DAG-based analysis called the “back-door”
criterion Pearl (1993). The method employs special jargon that may be obscure to most economists. The criterion is part of the
do-calculus, which consists of a set of DAG-oriented techniques that enables us to systematically examine the identification of causal
effects. The method is general in the sense that it applies to any DAG, but limited in the sense that it does not accept identifying
assumptions outside the DAG terminology. We discuss the do-calculus machinery, its benefits, and limitations in Section 6.

The counterfactual models M;,, M, and M, employ distinct techniques to generate the same conclusion: that identification of
the counterfactual outcome requires analysts to control for an unobserved confounding variable V. Summarizing, we have that:

Prpu(Y() [ V) = P(Y | T =1,V) = Py (YOIV) = P.(Y | T =1,V). 19)

If V were observed, we would be able to evaluate the expected value of the counterfactual outcome expectation, E,(Y | T=1, by
integrating the observed expectation E,(Y | T = t,V) over the support of V. The econometric literature provides a rich menu of
strategies to control for an unobserved confounding variable V. We discuss part of this menu in the next section.

31 See Heckman and Pinto (2015) for a proof. The criteria (16)-(17) still holds if the values ,1" € supp(T) were replaced by subsets A, A’ C supp(T) respectively.
32 See Heckman and Pinto (2015) for further discussion of the connection between empirical and hypothetical models.
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4. Econometric approaches to identification of counterfactuals in the Generalized Roy model

The Generalized Roy model is a framework for exploring the large toolkit of the econometric approach for identifying
counterfactuals. We compare what is possible in the econometric approach with what can be obtained using the non-econometric
paradigms. We describe several of these approaches here. We develop this discussion further in subsequent sections of this paper.

Eq. (19) states that the identification of causal effects in the Generalized Roy model hinges on controlling for the unobserved
confounding variables V. A popular approach to doing so uses instrumental variables that are independent of V. It controls for V' by
shifting T without affecting the distribution of V. However, the IV approach using Z as an instrument does not identify interesting
counterfactuals without additional assumptions.

For a simple example, consider a linear model in which the structural treatment equation is T = ay + a1 Z + a,V + €, and the
outcome function is Y = fy + ;T + B,V + ey, where ay, a;, @y, fy, B, B, are scalar parameters. In this model, the causal effect of T
on Y is given by g, and is identified by the covariance ratio cou(Y, Z)/cov(T, Z). This parameter can be estimated by a Two-Stage
Least Squares (2SLS) Regression. This tool has been available to economists since the 1950s.%

However, the Generalized Roy model is not captured by this simple two-equation system. The causal effect, Y (1) — Y(0) is,
in general, a random variable and not a constant. Thus treating g, as a constant does not capture the essential heterogeneity of
treatment effects across agents.>* The analogue to heterogeneous g, is stochastically dependent on V. There are numerous approaches
to identifying its distribution. We start with the use of instrumental variables in the presence of heterogeneous treatment effects
and then consider alternative approaches.

4.1. Instrumental variables

Heckman and Vytlacil (1999, 2005) address the question of identifying the Roy model by assuming a separable choice equation.
Their approach enables analysts to control for V' and, in turn, identify counterfactual outcomes. Their local Instrumental Variable
(LIV) approach considers a binary treatment T' € {0, 1}. Their separability assumption is motivated by economic choice theory and
states that treatment is given by a latent threshold-crossing equation that includes instrument Z and the confounder V; that is,
T =1[¢{(Z) > ¢p(V)]. Separability enables them to rewrite the choice equation as:

T=1[P(Z)2U|; P(Z)=P,(T=1]|2Z), (20)

Where the probability of treatment selection, denoted as P(Z)= P,(T = 1|Z), is typically referred to as the propensity score. The
unobserved variable U is given by U = F, 4(¢(V)) where F, 4 is the cdf of ¢(V), which is monotone increasing by construction.
Subscript “e” denotes that the probability distribution is constructed using the empirical model. Variable U has a uniform distribution
if ¢(V) is absolutely continuous; that is, U ~ unif([0, 1]). The structural approach uses unobservables. The Neyman-Rubin approach
does not. The do-calculus uses them, but in a limited way. We show in Section 6 that it rules out exploiting the information used to
obtain (20). This approach to unobservables precludes the use of methods that are fruitful in the econometric approach.

The hypothetical and empirical models for the Generalized Roy model that include the unobserved variable U are displayed in
Table 5. The LMC of T in the hypothetical Roy model of Table 5 implies that Y 1L T | (Z, T,U). The LMC of Z impliesY 1l Z | (U, T).
These two independence relationships imply, by contraction property D, that Y 1L T | (T,U). Following the same analysis of V as
(19),Y 1L T (T, U) implies that:

P, (Y | T=1, U) =P, (Y1) | U) = Py (Y1) | U). (21)

Otherwise stated, controlling for U enables analysts to identify counterfactual outcomes in the same fashion that controlling for
V does. Variable U is called a balancing score for V. This means that U is a surjective function of V' that preserves the independence
relationship Y LT | (T,V)=>Y WL T|T,U).*»

The Local Instrumental Variable (LIV) model of Heckman and Vytlacil (1999) can be used to identify probability distributions of
counterfactual outcomes conditioned on U by taking the derivative of the observed outcome with respect to the propensity score.
More generally, the counterfactual expectation E,; (¢(Y(?) | U = u) for any real-valued function g : R — R is identified if there is
sufficient variation of propensity score P(Z) around the value u € (0, 1).

Identification of E,g(Y | T =1,U = u) comes from the derivative of the expectation (—1)!E,(g(Y)1[T = t] | P(Z)) with respect
to the propensity score at the value P(Z) = u. In particular, it can be shown that:

~ ~ J0E,(Y | P(Z
E,(Y|T=1,U=u)-E,(Y|T=0,U=u) EEﬂX(Y(l)—Y(O)lU:u)z% .

where fix refers to the distribution generated by fixing (which is the same as that generated by “doing”) and e refers to the sample
distribution. Identification requires sufficient variation of the propensity score P(Z) around u € [0, 1]. If P(Z) has full support, the
average treatment effect can be evaluated by ATE= E,(Y | T = D-E,(Y | T =0) = /01 (Eh(Y | T=1U=u-E,(Y|T=0U= u))a’u.

(22)

33 gee Theil (1953, 1958, 1971), Amemiya (1985), Hansen (2022). Theil (1953) invented this method. The method is far more general and applies to nonlinear
models as well.

34 A heterogeneous treatment effect case would write , = (Y, — Y,) and f, = Y.

35 The balancing score was introduced by Rosenbaum and Rubin (1983).
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Table 5
Binary Choice Roy Model: Empirical and hypothetical causal models.

Empirical Model Hypothetical Model
I e—®)
LMC LMC
V: Vi z V U (Z.T)
z: Z LU,V Z U Wv,U,Y.T)
U: vunz|v ULY,ZT) |V
T: TV |(ZU) T 1L(T.V,Y)|(Z,U)
Y : Y 1L (Z,U) | (T, V) Y L(Z,U.T)|(T.V)
T: (not defined for the model) T U (T,V,U,Z)

4.2. Stratification

A recurrent theme in this section is that the identification of counterfactual outcomes hinges on controlling for the confounding
variable V. The solution of the LIV model invokes the separability assumption (20), which generates a balancing score U for V.
According to (23), the nonparametric point-identification of the counterfactual outcomes conditioned on U = u is obtained by
differentiating the outcome with respect to the propensity score P(Z) at value u € (0, 1).

Eq. (22) assumes that the sample propensity score has enough variation around the value u € (0, 1). Consequently, the equation
is not directly applicable to the case of discrete instruments. One approach to overcoming this limitation is to use the discrete
counterpart of Eq. (22). Heckman and Vytlacil (2005) show that for any two values z, z € supp(Z) such that P(z') =’ > u = P(z)
we have that:

B Z=-E | Zz=2 A Ef,-x(Y(l)—Y(O) U =u>a’u

Pe(T=1|Z=Z’)—Pe(T=1|Z:z)_ v —u 23)
=Efn(Y()=Y(0) |u<U <)

Eq. (23) states that difference of mean outcomes conditional on two instrumental values z, z’ identifies the counterfactual outcome
over an interval of U defined by the propensity scores P(z) and P(z’). The equation evaluates a causal effect that depends on the
values of the instrument. These effects are called Local Average Treatment Effects (LATE) by Imbens and Angrist (1994). LATE-type
effects differ from causal effects such as ATE or TT, which do not depend on the IV values.*®

A consequence of (23) is that ATE can be identified if there are two instrumental variable values z, z; such that z, induces full
treatment nonparticipation (P(z,) = 0), and z; induces full treatment participation (P(z;) = 1):

EY|Z=2)-E(Y|Z :zO):E/-,»x(Y(l)—Y(O) 10<U < 1)
=EY|T=1)—E(Y |T =0)=ATE.

This setup is equivalent to a randomized control trial with full compliance. Mogstad and Torgovitsky (2018) use functional form
assumptions to extrapolate estimates over intervals of U to point estimates.

Another approach for controlling for V exploits the discrete nature of the instrument to generate an alternative balancing score.
Let instrument Z take values in the discrete set supp(Z) = {z;, ..., zy} such that P(z;) < -+ < P(zy).” Let T(z) = 1[{(z) > ¢(V)] be
the counterfactual choice that would occur if Z were fixed at value z € {z,...,zy}. The response vector S = [T(z;),...,T(zy)]' is
the random vector of potential choices across all Z-values.

Response vector S shares the same causal relationships of unobserved variable U in Table 5. By this we mean that § is a function
of V' and that the choice 7' can be written as function of Z and S:

T= [1[2 =z]....1[Z :zN]] -S.

Similar to U, the response vector S is a balancing score for V. The independence relationship ¥ 1L T | (T, S) holds, which implies
that P,(Y | T =1,8) = P,(Y | T =1,). Heckman and Pinto (2018) show that the response vector S controls for V' by generating a
special partition of its support that spans the support of V' and renders choice T statistically independent of V' within each cell of
the partition. Each column of § is a list of responses to different treatments for a person of a given V.

36 Heckman et al. (2008) develop the relationship between LIV and LATE in depth.
37 The increasing ordering of propensity scores is assumed without loss of generality.
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The values of .S are called response-types or strata.>® The separability assumption eliminates some of the potential response-types.
An influential example is due to Imbens and Angrist (1994), who investigate the case of a binary instrument and a binary treatment.
There are four possible response-types termed always-takers, compliers, never-takers, and defiers. They invoke a monotonicity
condition that is equivalent to the separability assumption Vytlacil (2002). The assumption eliminates the defiers and enables
the identification of treatment effects for the compliers. See Heckman and Pinto (2018) and Buchinsky and Pinto (2021) for general
results on identification.

4.3. The matching assumption

A popular method for identifying treatment effects assumes that a set of observed pre-treatment variables suffice to control for
the confounding variable V. Otherwise stated, it assumes that the observed variable X is a balancing score for the confounding
variable V. This assumption is called Matching.>* Another (structural) way to state this is that X spans the space of V.

Table 6 presents the empirical and the hypothetical models that justify the matching assumption. The LMC of T in the
hypothetical model implies that ¥ 1L T | (T, X). According to (17), we have that P,(Y | T =1, X) = P; (Y()) | X) = P,(Y | T =1,X)
which means that the counterfactual outcome is identified by conditioning on X. Matching variables X are assumed not to be
descendants of the hypothetical variable T. Thus, P,(X) = P,(X) and the probability distribution of the counterfactual outcome
is given by P/, (Y(1) = f (P(Y | T = t,X = x)dF,x(x)). The average causal effect of a binary treatment T € {0,1} is
evaluated by the weighted average of mean difference between the treated and not-treated participants that match on X, namely,
ATE = f(Ee(Y IT=1X=x)—E(Y|T=0X= x))dFe,X(x).“O

Table 6
Matching model: Empirical and hypothetical causal models.

Empirical Model Hypothetical Model

The matching assumption replaces the unobserved variable U of the Generalized Roy model in Table 5 by the observed variable
X. In practice, it assumes that potential bias generated by confounding variables can be ignored when controlling for observed pre-
treatment variables. Under matching, the identification of treatment effects does not require an instrumental variable nor additional
assumptions such as separability. This assumption enables us to solve the problem of selection bias induced by unobserved variables
V by conditioning on the observed variables X.

The matching assumption is justified in the case of randomized controlled trials (RCTs). In this case, the matching variables X
denote the pre-treatment variables conditioned on in the randomization protocol. In observational studies, the matching assumption
is often rather strong. It assumes that the analyst observes enough information to make all the agent’s unobserved variables irrelevant
(see Heckman, 2008b). Otherwise stated, matching assumes a symmetry in information between the economic agent and the
econometrician.

There are several identification approaches that acknowledge the possibility of information asymmetries between the agent being
studied and the econometrician: control function approaches, replacement functions, or proxy variables. These methods often differ
considerably in terms of assumptions and methodology. However, they all share the same identification principle: they use observed
data to evaluate a proxy variable that plays the role of a matching variable.

4.4. Matching on proxied unobservables

Matching on proxied unobservables is a version of matching that uses observed data to control for the confounding effects of
V. Consider the modification of the Generalized Roy model in Table 7. The unobserved variable Q is a balancing score for the
unobserved confounder V. The matching conditions of the hypothetical model, Y 1L T | (T, 0), and its respective counterpart in
the empirical model, Y(s) LL T | Q, hold. Variable Q has two additional properties: (1) it may cause outcome Y; and (2) it may be
measured with error by the observed variable M.

A common setup where Q arises is in the evaluation of college economic returns where T denotes college graduation, Y denotes
earnings, and Q denotes unobserved abilities such as cognition or conscientiousness. These abilities are not directly observed
but measured with error by an observed vector of variables M, such as psychological surveys or test scores. Formally, we write

38 The concept was developed by Robins (1986) and embellished in Frangakis and Rubin (2002).

39 Heckman et al. (1998) investigate several estimation methods that invoke the matching assumption.

40 Heckman et al. (1998) incorporate additive separability between observable and unobservable variables as well as exogeneity conditions that isolate outcomes
and treatment participation into the matching framework. Additionally, they compare various types of estimation methods to show that kernel-based matching
and propensity score matching have similar treatment of the variance of the resulting estimator.
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M = f,(0,¢y). The identification strategy exploits the structural function M = f),(0Q, ¢,,) to evaluate Q, which, in turn, allows us
to control for V' and identify causal effects.

Matching on proxied unobservables has long been used in the economics of education (see, e.g., the essays in Goldberger and
Duncan, 1973 and Goldberger, 1972). The method is called the latent variable approach by Heckman and Robb (1985a). This
literature offers several possibilities for estimating O (Aakvik et al., 1999, 2005; Carneiro et al., 2003; Cunha et al., 2005). Olley
and Pakes (1996) is an application of this method. A common parametric approach extracts factors from psychological measurements
to extract Q as a latent factor. Nonparametric factor analysis is developed in Cunha et al. (2010) and Schennach (2020). It is also
possible to condition nonparametrically on Q without knowing the functional form of f),.

Table 7
Matching on proxied unobservables: Empirical and hypothetical causal models.

Empirical Model Hypothetical Model

4.5. Control functions

The control function principle specifies the dependence of the relationship between observables and unobservables in a nontrivial
fashion. The principle was introduced in Heckman and Robb (1985b,a) building on earlier work by Telser (1964) and later
popularized by Blundell and Powell (2003). It was also applied in Carneiro et al. (2003) and Cunha et al. (2005). Heckman’s sample
selection correction (1979) is a control function.

We illustrate the control function principle using a version of the Generalized Roy model where V is a scalar random variable
and the binary choice T is given by the separable equation T = 1[u(Z) > V1. Let J = f;(T,V,¢;) represents unobserved skills caused
by the treatment 7' and the unobserved confounding variable V. In addition, let the outcome equation be additive in J, that is to
say that the outcome Y can be written as Y = fy (T, ey) + w(J), The model is displayed as a DAG in Table 8. The LMC of Y in the
hypothetical model implies that Y LL T | (T,J). This means that J is a matching variable. The control function approach seeks to
control for variable V' by estimating the function y(J) of the outcome equation.

Heckman and Vytlacil (2007a,b) use the assumption of separability of observables and unobservables in the choice equation and
the outcome assumption of additivity to evaluate y(J) as a function of the propensity score P(Z). Similar to the LIV Model, we
can use the CDF transformation to write the choice equation as T = 1[P(Z) > F,(V)], where F, (V) ~ unip([0, 1]). Note that the
expected value of the outcome conditional on T = 1 gives the conditional counterfactual mean:

EXY|Z.T=D)=E;(Y()|Z, T=1)=E, (Y| T=1,2T=1),

where the first term is observed, the second term uses fixing and the last one uses the hypothetical model. Under separability and
outcome additivity, we can express E,(Y(1) | T =1,Z,T =1) as:

Ey(Y|T=1Z=2T=1)=E,(fyT.ep) |IT=1)+E,(y()|T=1,Z=2T=1),
= E,(fy(Ley)) + E,(w(fr(LV.ep) | Z=2T =1),
(setting E,(fy(Ley) = a)
=a + Eh<y/(fJ(l, V.ep) | P(z) > FV(V)>,
=+ E(y(f,LV.e)) | PG> F (V).

SE(Y T=1,ZT-= D=a+ ¢P2) ,
N——

control function

where ¢, (P(2)) = E,(w(f;(1,V.ep)) | Z,T =1).

where the first equality uses the additivity assumption, the second uses the fact the T is an external variable, the third uses the
separability assumption, the fourth switches the hypothetical model into the empirical model as V, ¢;, Z are non-descendants of T.
The last equation gives the expectation E,(Y | T=12T= 1) as a function of the propensity score P(Z). Control function ¢,(P(Z))
can be estimated from observed data and the expected value of the counterfactual outcome can be evaluated as

1
E,(Y() = /0 a; + ¢1(p)d Fpzy(p).
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Table 8
Control function: Empirical and hypothetical causal models.

Empirical Model Hypothetical Model

®

()

4.6. Panel data analysis and other approaches

A commonly used panel data method is difference-in-differences as discussed in Heckman and Robb (1985a), Blundell et al.
(1998), Heckman et al. (1999), and Bertrand et al. (2004). All of the estimators previously discussed can be adapted to a panel data
setting. Heckman et al. (1998) introduce difference-in-differences matching estimators to eliminate the bias in estimating treatment
effects. Abadie (2005) extends this work. Separability between errors and observables is a common feature of the panel data approach
in its standard application. Altonji and Matzkin (2005) and Matzkin (1993) present analyses of nonseparable panel data methods.
Regression discontinuity estimators, which are versions of IV estimators, are discussed by Heckman and Vytlacil (2007b).

Table 9 summarizes some of the main identification approaches for the Generalized Roy model discussed here. The table
barely scratches the surface, but gives a sense of the broad menu in the econometric approach. The essays in the Handbooks of
Econometrics (Heckman and Leamer, 2001, 2007) give a range of other estimation approaches.

Table 9
Some alternative approaches that identify treatment effects by controlling for V.

YIUT|T.X,V), Tei{01}
EX|T=tX=x)=[EX|T=0tX=xV =0dF, 0

Method Assumes Need Instrument (Z)? Identify Distribution of V'?
Matching? V, X known No Yes (V observed)
Control Functions® V estimated, X, Z known Yes (except cases where Yes (over support)
(continuous T); Bounds on functional forms secure
quantiles of V' estimated (discrete identification)
case)
Factor Method® Distribution of V estimated from No Yes (with auxiliary measurements over support)
additional measurements of V'
(M)
IV: LATE, LIV4 Z.,X known Yes Estimate intervals of quantiles of V' (Heckman and

Vytlacil, 1999, 2005) and conditions on them; LIV
shrinks interval of quantiles of V' to a point using
continuous instruments and conditions on them

Stratification® Z,X known Categorical instruments give Identify distribution of strata which places interval
restrictions on strata bounds on V and conditions on them
(balancing scores for V)

Longitudinal Data Variety of assumptions Covariance restrictions Yes; in long panels can identify V'
Methods’

Mixing VaiXx No (intervals of V) Yes (Mixtures)

Distributions8

a (Rosenbaum and Rubin, 1983; Heckman et al., 1998);  (Blundell and Powell, 2003; Heckman and Robb, 1985b,a); ¢ (Carneiro et al., 2003; Heckman et al.,
2018; Cunha et al., 2010); 4 See review in Heckman and Vytlacil (2007a); ¢ (Heckman and Pinto, 2018; Frangakis and Rubin, 2002); f (Abbring and Heckman,
2007; Heckman and Robb, 1985a); 8 (Cameron and Heckman, 1998; Prakasa Rao, 1992; Heckman and Singer, 1984).

5. The Neyman-Rubin (NR) causal model

The Neyman-Rubin causal approach uses the language and framework of experimental design developed by Neyman (1923),
Fisher (1935), and Cox (1958) and popularized by Holland (1986). It ignores essential aspects of the econometric approach to
causality and conflates distinct concepts (e.g., SUTVA).*! It does not define hypothetical models nor does it employ structural
equations to characterize causal models. It focuses on units of analysis instead of system of equations.

41 Heckman (2008a) explains that: SUTVA — Stable Unit Treatment Value Assumption — conflates two two distinct concepts regarding functional autonomy
(structural invariance) and no interactions among agents.
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In this approach, causal models are characterized by statistical independence relationships among counterfactual counterparts
of observed variables, never precisely justified. In place of the thought experiments that characterize the econometric approach, it
uses randomized controlled experiments as the foundational paradigm. The contrast between thought experiments and randomized
control experiments is central to understanding the differences in the approaches.

The NR approach lacks the clarity of interpretation offered by causal models described by structural equations. It is often difficult
to map the independence relationships of an NR model into the causal relationships produced by economic theory. In particular,
NR makes it difficult to use economic theory to assess the credibility of assumptions about the underlying structural equations that
ensure the identification of causal effects or to interpret economic data using economic models.

Another drawback is that the NR framework lacks the fundamental tools of econometric causal analysis. It does not explicitly
model unobserved variables in structural models. This feature substantially limits the use of standard econometric tools. It rules out
(or makes cumbersome) several fruitful econometric strategies, such as balancing bias within models using compensating variations
of arguments of structural functions to keep agents at the same levels of well being,** and cross-equation restrictions on both
observable and unobservable model components,* or functional form restrictions. In practice, the set of tractable identification
strategies that employ the NR framework is limited to a few possibilities: randomized trials, matching, IV and its many surrogates
and differences-in-differences.* This section illustrates the drawbacks of NR in analyzing core policy questions or in synthesizing
and interpreting evidence.

5.1. The Generalized Roy model under NR

The NR framework focuses on the unit of analysis i € T which usually represents an economic agent or entity. The framework
describes part of the Generalized Roy model of Table 3 using two counterfactuals: 7;(z) is the potential treatment when the
instrument Z is externally set to value z € supp(Z); and Y;(z, z) is the potential outcome of agent i when Z is set to value z € supp(Z)
and choice T is set to ¢ € supp(T). Properly formulated, potential outcomes are the outputs of structural equations. NR does not
explicitly characterize the treatment choice equation. It prides itself on being nonparametric, although some proponents claim that
assuming linearity is an innocuous assumption, even when models are fundamentally nonlinear.*

The NR framework characterizes the Generalized Roy model (4)-(7) by three assumptions:

1. An exclusion restriction states that Y;(z, z) = Y;(¢, z’), for all z,z’ € supp(Z), t € supp(T) and all i € 1.

2. 1V relevance: Z is not statistically independent of T, that is Z W T.

3. Exogeneity condition: Z 1L (Y (¢), T(z)) for all (z,1) € supp(Z) x supp(T).

The exclusion restriction means that Z does not directly cause Y. Thus, we can express the counterfactual outcome as Y;(r)
instead of Y;(1, z). IV relevance means that T is caused by Z. The exogeneity condition of the NR framework can be traced back
to the independence relationship between Z and V of the Generalized Roy model (4)—(7). In the NR framework, the exogeneity
condition is an assumption. In the Generalized Roy model, the exogeneity condition is a consequence of the causal relation among
model variables. Namely, that the Z and V' are external variables. LMC (8) implies that Z Ll V, which, in turn, generates the
exogeneity condition.

The identification of counterfactual outcomes requires additional assumptions. A popular assumption securing identification is
the monotonicity condition (24) of Imbens and Angrist (1994). It states that a change in an instrument induces agents to change
their treatment choice in the same direction. Notationally, for any z,z’ € supp(Z), it says that:

T(2)>T(Z)Viel or T(z)<T()Viel (24)

Vytlacil (2002) shows that the monotonicity condition (24) is equivalent to the separability assumption 7' = 1[{(Z) > ¢(V)].
Otherwise stated, the NR counterpart for the Generalized Roy model separability assumption is the monotonicity condition. Each
condition enables the identification of causal effects of T on Y in its respective framework. At this level, the IV models in the two
frameworks are equivalent.

Model equivalence does not, however, imply that they offer the same analytical capacities. In particular, the Generalized Roy
model (4)—(7) explicitly displays the unobserved confounding variable V', while NR does not. This feature enables analysts to further
investigate the model and use other approaches for controlling for it. Section 4 shows that the identification of counterfactual
outcomes hinges on the analysts’s ability to control for the unobserved confounding variable V. Heckman and Vytlacil (2005) use
the fact that U is a balancing score for V' to define and identify a new parameter called the marginal treatment effect (MTE):

MTEw) = E,(Y |T=1,U=u)-E,(Y |T=0,U=u) = E;, (Y()~Y(0) | U = u).

The MTE plays a primary role in generating a range of causal effects commonly sought in policy evaluations. A few of these causal
parameters are presented in Table 10.

42 See e.g., Rosen (1986), Ekeland et al. (2004).
43 See, e.g., Hansen and Sargent (1982).

44 See Imbens and Rubin, 2015.
45 Angrist and Pischke (2009). Ekeland et al. (2004) show that nonlinearity is intrinsic to hedonic models and that linearizing it produces identification

problems.
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Table 10
Some causal parameters as weighted average the MTE.
Source: Heckman and Vytlacil (2005).

Causal Parameters MTE Representation Weights
ATE = E,(Y(1) - Y(0) = /' MTE()WATE(p)dp WATE(p) = |
TT=E,(Y()-Y(©O) | T=1) = /' MTEG)W ™ (p)dp WTT(p) = e
/(I—ﬁ_,,(r))di
o
TUT = £,( () =Y | T = 1) = Jy AW T ) W (p) = e
J(1=F.p0)d1
0
o 1 S (1=EP)dE,p0)
TSLS = zwgﬁi :/MTE(p)WTSLS(p)dp WSS (p) = 2 :
o 0 J(=Fere) dFp®
P(z)) o
_ E(Y|Z=2)-E,(Y|Z=2) _h LATE ATE, .
LATE = e = [ MTEQW"™(p)dp WITE ) = oL

P(z9)

The analytical gain generated by switching from the NR framework to a structural equation framework is substantial. The use
of structural equations facilitates a richer analysis and a deeper investigation of the properties of the Generalized Roy model. Such
analyses cannot be achieved in the NR framework because it does not include unobserved variables, nor does it employ structural
equations. This analytical deficiency of the NR framework limits the researcher’s ability to extend causal analysis of the Generalized
Roy model and other economic models.

The parsimonious machinery of the NR framework is often misunderstood as endowing the Generalized Roy model with a greater
level of generality. This impression is misleading as the IV model featured in the NR framework is equivalent to the Generalized
Roy model described by Egs. (4)-(7) and its monotonicity criteria is equivalent to a separability condition. Its apparent simplicity
is due to its lack of explicit statements about its assumptions.

5.2. The matching model in NR

A common identification approach in NR is a matching assumption on observed variables. It states that treatment choice 7 is
independent of counterfactual outcomes Y (r) when conditioning on observed pre-treatment variables X, that is, Y(r) 1L T | X.*
Intuitively, the assumption states that pre-treatment variables X are sufficiently rich to account for all the unobserved variables
that jointly influence treatment choice T and outcome Y. The assumption can be easily criticized as often being overly optimistic
for the case of observational studies (Heckman, 2008b; Heckman and Navarro, 2004).

It is natural to assume that increasing the number of pre-treatment variables used for matching decreases bias from unobserved
confounders. This notion however is known to be false.”” Understanding why this assumption is incorrect can be challenging
within the NR framework. Conversely, the causal model presented in Table 11 provides a straightforward example that clarifies
this misconception.

Table 11
Example of a causal model with non-standard matching conditions.

Causal Model DAG Independence Relationships
V= fy(ey) n
J = fi(ep)
W = fw(ew)
T=frV.W,ep) Y@)LLT|R
R = fr(T,V,ep) YOO MT|X
U= fy(Rey) YO) LT | (X,R)

X = fr(W,J,ex)
Y = fy(T,RU,J,ey) @ 6
The causal model Table 11 consists of four observed variables: the treatment 7, the outcome Y, a pre-treatment variable X and
a post-treatment variable R. The model also contains four unobserved variables V, U, W, J. The causal relationships among the
observed and unobserved variables renders Y (¢) LL T|R even though Y (r) X T|X. The independence relationship that commonly
characterizes a matching assumption applies to the post-treatment variable R, but not to the pre-treatment variable X. Moreover,
adding the pre-program variable X to the conditioning set of Y(r) LL T | R prevents identification because Y (r) X T | (X, R).

The causal model of Table 11 exemplifies the difficulty of performing causal investigations within the NR framework. The unusual
properties of the model stem from the particular causal relationships among its observed and unobserved variables. This model is not

46 In the language of Pearl (2009a), X d-separates Y and T.
47 See, for instance, Pearl (2009c), Heckman and Navarro (2004), Greenland et al. (1999).
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easily analyzed within the NR framework which it lacks unobserved variables and suppresses the structural equations that clearly
describe the causal relationships among variables.

5.3. Mediation models under NR: An example

Mediation models originate in the literature on path analysis and simultaneous equations.”® They trace the impacts of
interventions on outcomes through their multiple channels of operation. Identifying the causal models generated by NR assumptions
is often a daunting task. The economic content of these assumptions is often far from clear. We examine several mediation models
to illustrate this point and show the power of the econometric approach compared to an approach based on NR principles. Table 12
uses the econometric approach to present a general mediation model in which a treatment T causes a mediator M and an outcome
Y that is caused by both T and M. V denotes a random vector that plays the role of the unobserved confounder causing T, M and
Y. The counterfactual mediator when the treatment if fixed at ¢t € supp(T) is M (t) = f,(t, V, €),). The counterfactual outcome when
the treatment is fixed at  and the mediator is fixed at m € {0,1} is Y(t,m) = fy(t,m,V,ey). The counterfactual outcome when we
fixonly T attis Y(t) = fy(t, M(1),V, ey).

Table 12
Mediation model with confounding variable.

Causal Model DAG
V=fvley)

T = fr(V,ep)

M = [ (T, V., epy)
Y =fy(T.M,V,ey)

The goal of mediation models is to decompose the total effect of T on Y into an indirect effect that includes the effect of T on
M and M on Y and a direct effect not mediated by M. To facilitate the discussion, let T and M denote binary variables taking
values in {0, 1}. The average (total) effect of T on Y is E,; (Y(1) - Y (0)).*” We can also define the average direct effect of T on
Y as E; (Y(1,M) - Y0, M)) = Z,ln=o E;; (Y(1,m) = Y(0,m))P,(M = m) and the average indirect effect as E . (Y(T,0) - Y(T, 1)) =
Yo Erin (Y (0. 1) = Y (1, 0)P(T = 1).%°

Table 13 displays three hypothetical models suitable for examining the total, direct and indirect effects. The first DAG corresponds
to the total effect. The hypothetical variable T replaces the T-input of both the mediator M and the outcome Y equations. The second
DAG corresponds to the indirect effect only and the hypothetical variable replaces only the T-input of the mediator equation. The
last DAG corresponds to the direct effect only where the hypothetical variable T replaces only the T-input of outcome equation.

Table 13
Hypothetical models for the mediation model: Total, direct and indirect effects.

Total Effect Indirect Effect Direct Effect

The presence of confounding variable V prevents the identification of the counterfactual means E rix(M(1) and E rix(Y(t,m)). A
solution to this identification problem using NR is the Sequential Ignorability (SI):>!

(Y m),M(t)) L T, 27
Y@, m) L M@ |T, (28)

48 gee Wright (1921, 1934), Klein and Goldberger (1955), Bollen (1989).
49 This is the same as E,(Y(1) - Y(0)).
50 Alternatively, we can then define the direct effect and indirect effects for a given ¢ by (25) and (26) respectively.

DE() = Ef,, (Y(L M) - Y(0, M) = / E (Y(Lm) = Y(0,m))d Eyy (m) (25)
TE() = E;, (Y(t, M(0)) - Y(0, M(1))) = / E; (Y (t,m)d Fyy ) (m) —/ E ;. (Y (t,m))d Fyy 0, (m). (26)
51 See Imai et al. (2010, 2011) for the properties of these assumptions. Robins (1986) uses such assumptions in his g-computation algorithm.
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for any t,# € supp(T) and m € supp(M). SI (27)-(28) enables analysts to identify counterfactual means by statistical conditioning
E (M) = E;(M | T =1 and E;, (Y(t,m) = E,Y | T =1, M = m).

SI assumptions (27)—(28) can be understood as an application of the matching condition to mediation models. Assumption (27)
states that the choice T is exogenous with respect to the outcome and mediator counterfactuals. The assumption would be justified
if T were randomly assigned by a RCT experiment.

The interpretation of assumption (28) is less straightforward. It states that the counterfactual mediator M (¢) is independent of the
counterfactual outcome Y (1, m) when conditioned on T. The assumption cannot be directly tested even in randomized experiments
that randomize 7' (Imai et al., 2010). SI assumptions (27)—(28) are much more easily interpreted using structural equations. The
assumptions rule out any confounding variable V', generating the model in Table 14.

Table 14
Mediation model with no confounding variables.

Causal Model DAG
T = fr(er)
M =fyT,ey)

Y =fy(T.M,ey)

In light of a structural analysis, it can be seen that SI assumptions (27)-(28) are rather strong. They can be weakened if
instrumental variables are available, as depicted in Table 15. We use the model to exemplify a case in which NR assumptions
are logically possible but generate a causal model that is difficult to justify using any plausible economic argument. The structural
model enables the analyst to interpret the statistical assumptions using behavioral theory.

Table 15
Mediation model with instrumental variables.

Causal Model DAG
V= fyley)

Z = fy(ez)

T = fr(Z,V,ep)
M = [y (T,V,ep)

Y = £y (T M,V )

The mediation model with IV has four counterfactuals, T(z), M(1), Y(t), Y(t,m) previously defined. In the language of NR, the
model would be characterized by IV exogeneity condition Z 1L (T'(z), M (1), Y (t), Y (¢, m)). The condition holds due to the independence
of Z and V.52 Suppressing Y generates an IV model where M plays the role of the outcome.

To dig more deeply, we investigate the case of a binary instrument Z € {0, 1}. The response vector S; = [T;(0), T;(1)]’ denotes
the vector of treatment choices that agent i would take if it were assigned to each of the instrumental values. Section 4 shows that,
given S, the treatment choice T depends only on the instrument Z. The exogeneity condition states that Z is independent of the
counterfactual outcome Y (¢). Thus

TLY®]|S. (29)

S is a balancing score for V.

Yamamoto (2014) uses the language of NR to identify mediation effects using instrumental variables. His solution merges SI (27)-
(28) with the matching property of the response vector § in (29). He advocates an assumption that he terms the local average causal
mediation effects (LACME) assumption:

Y (@t,m), M) LT | (S = [0,11), (30)
Y(t,m) L M(t") | (T, S = [0,1]). (31)

LACME (30)-(31) adds the response vector .S as an additional conditioning variable to the SI independence relationships in (27)-
(28). Assumption (30) is an extension of the matching property of S from the IV model of Table 14 to the mediator model of
Table 15. Under monotonicity (24), the LACME assumption identifies the direct and indirect mediation effects for compliers.

It is easy to interpret LACME in terms of NR assumptions: assumptions (30)-(31) are a weaker version of SI (27)-(28) that
incorporates the LATE analysis of Imbens and Angrist (1994). On the other hand, it is difficult to gauge how the LACME assumptions
fit into the mediation model of Table 12. It is even harder to interpret the causal content of these assumptions.

Table 16 presents two DAGs that use the structural approach to clarify the causal content of LACME. The first DAG in Table 16
places the unobserved response vector S into the mediation model of Table 12. S = [T(0), T(1)]’ is expressed as a function of the
confounding variable V' because T'(z) is a function of V. Choice T is a function of .S and Z since T = [I[Z =0],1[Z = 1]] S. Thus, the

52 Note that if we were to suppress M from the DAG of Table 15, we would obtain the empirical model of Table 4.
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response vector S plays the role of a balancing score for V for choice T only. The resulting DAG does not include more information
than the original model of Table 12 because S is unobserved.

Table 16
Mediation model including S and the mediation model under LACME assumption.

General DAG with IV DAG under LACME

The second DAG in Table 16 displays the mediation model under LACME. According to assumption (31), the response vector
S plays the role of a balancing score for T and M. In addition, LACME prevents V from jointly causing M, Y and implies that .S
directly causes M, Y.

LACME’s foundation is rooted in statistical rather than causal considerations. Consequently, it is difficult to translate LACME
into economic models with credible causal interpretations. Its underlying assumptions are devoid of economic substance, a trait
commonly found in analyses within the NR framework.

5.3.1. Using structural equations to identify the mediation model with IV

Dippel et al. (2020) study the identification of causal effects for the mediation model with an instrumental variable. Their analysis
illustrates the gain in clarity and interpretability when a causal model is expressed by structural equations instead of NR statistical
independence relationships.

A typical empirical setting of an IV model consists of one instrument and various outcomes. A mediation model with an
instrument arises when the treatment causes an intermediate outcome (the mediator), which in turn causes a final outcome. The
DAG of this empirical model is presented in the first column of Table 17.

Table 17
Dissecting the mediation model.

Original Model Suppressing the Outcome Suppressing the Mediator

The second column of Table 17 presents the DAG generated by suppressing the final outcome. The resulting DAG depicts the IV
model examined in Section 3 where the mediation M plays the role of an outcome.

The second column of Table 17 displays the DAG that results from supressing the final outcome. This DAG represents the IV
model discussed in Section 3, where mediation M plays the role of an outcome. The causal effect of T on M can be identified by
the methods discussed in Section 4.

The third column of Table 17 suppresses the mediator M. The resulting model is also an IV model. This means that the total
effect of T on Y can also be identified by the methods of Section 4. Unfortunately, the IV does not identify the causal effect of M
on Y. Consequently, mediation analysis cannot be conducted without further assumptions.

Dippel et al. (2020) address the question of whether it is possible to use an instrumental variable Z to nonparametrically identify
the causal chain connecting T, M, Y while maintaining the endogeneity of the treatment 7 with respect to the mediator M and
outcome Y. They show that the only solution to this problem is to assume the partially confounded mediation model of Table 18.

The partially confounded model disientangle the confounding variable ¥ into variables V- and V', which are independent of
each other (V 1L V). Here, V; influences both T and M, whereas V', affects both M and Y. These unobserved variables can be
understood as distinct components that are typically analyzed in variance models.

The partially confounding assumption generates an additional exogeneity condition (M(z),Y (m,t)) 1L Z | T while maintaining
the endogeneity of the treatment 7" with respect to M and Y. This means that Z becomes a valid instrument for identifying the
causal effect of M on Y when conditioning on the treatment variable T. If the assumption holds, the causal effect of M on T can
be evaluated by the methods of Section 4. Essentially, the use of a causal model clarifies the mechanism generating the additional
exogeneity condition. This clarification allows Dippel et al. (2020) to delve into the intuition, feasibility, and estimation strategies
for the partially confounded mediation model. They provide a variety of examples to demonstrate situations in which the partial
confounding assumption is likely to be applicable, as well as scenarios where it may not hold.
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Table 18
Partially confounded model with instrumental variables.

Causal Model DAG
Vi =fy ()

Vy =fv,(€vy)

Z = f(ez)

T = fr(Z,Vy,ep)

M= fy(T. V. Vy.€y)
Y = fy(T,M,Vy,ey)

6. The do-calculus and the hypothetical model

This section compares the do-calculus framework (DoC) of Pearl (2009a) with the Neyman-Rubin (NR) framework of Holland
(1986) and Imbens and Rubin (2015), as well as the Hypothetical Model (HM) of Heckman and Pinto (2015).

The DoC was first presented in Pearl (1995). The method employs graph theory-based algorithms to identify the probability dis-
tribution of counterfactual variables in causal models represented by DAGs.*>* In contrast with NR, DoC uses autonomous (invariant)
structural equations. The method clearly describes causal relationships among model variables. Its fundamental relationships are
based on thought experiments. It is not incompletely formulated in a way that leads to problematic causal interpretations, as in the
NR approach.

DoC applies to any nonparametric, recursive system of structural equations. Similar to HM, DoC allows for unobserved variables.
It can be applied to multiple equation causal models and a range of causal inquiries.

However, HM and the DoC differ greatly regarding counterfactual manipulations. To address the causal operation of fixing,
the HM solution is based on a hypothetical model that formalizes thought experiments and places them on a sound probabilistic
footing. Contrary to HM, DoC defines hypothetical models by making manipulations within the empirical model. It does not have
a counterpart to T, the source of hypothetical variation in HM. DoC implements the notion of setting or fixing using a new set of
rules that combine graphical analysis, independence relationships and probability equalities.

For instance, the DoC uses a DAG-based criteria called d-separation to check for conditional independence among variables. Its
definition requires some DAG terminology. Let U be a path of arrows that connects variables T and Y in a DAG G regardless of the
arrows’ directions. A collider C in path U is a variable that has two arrows pointing at it (inverted fork). A variable V' in the path
U is said to block T and Y in the DAG G if it is not a collider (nor a descendant of a collider). T and Y are said to be d-separated
by a set of variables V' if V' blocks all paths from T to Y.

6.1. The rules of DoC

As noted in Section 3.5, DoC uses the “back-door” criterion to verify matching conditions. In DoC terminology, the matching
condition Y (¢) LL T'|V of the Generalized Roy Model in Table 3 is expressed by the statement: “V d-separates Y and T in the DAG
Gp,” where G be the original DAG of the Roy Model and G is a derived DAG which suppresses the arrows departing from T'. The
“back-door” criterion holds for confounder V of the Roy Model. This implies the matching condition in which controlling for V
renders the counterfactual outcome Y (¢) statistically independent of treatment 7.

The core machinery of the DoC consists of three DAG-based rules. Additional notation is necessary to describe these rules. Let Y,
K, Z, T denote disjoint variable sets in 7. In DoC notation, T(Z) denotes the variables in T that do not directly or indirectly cause
Z. “Do” deletes certain links in the original graph and assumes certain conditional independence relations. This is Pearl’s way to
fix variables externally. DoC uses G for the derived DAG that deletes all causal arrows arriving at K in the original DAG G. G
denotes the DAG that deletes all causal arrows emerging from 7. In this notation, Gxr stands for the derived DAG that suppresses
all arrows arriving at K and emerging from 7, while Gxrm deletes all arrows arriving at K in addition to arrows arriving at T(X),
variables in 7' that are not ancestors of X.

The DoC rules combine a graphical condition with a conditional independence relation that, when satisfied, imply a probability
equality. These rules are detailed in Table 19. Identifying a causal effect involves repeatedly applying these rules. We illustrate
several examples of how to utilize these rules for causal analysis.

In computer science, DoC is said to be “complete”. This is different from the notion of completeness as defined in simultaneous
equations theory discussed below in Section 7. The key DoC notion is that if a causal effect is identifiable, it can be identified by
the iterative application of some sequence of the three rules (Huang and Valtorta, 2006; Shpitser and Pearl, 2006).

A major limitation of do-calculus is that it only applies to non-parametric models that can be fully characterized by a DAG.
Stated otherwise, the method does not account for assumptions about the functional forms of the structural equations or covariance
restrictions. This limitation hinders the application of most of the popular econometric tools used in empirical economics, such
as cross-equation restrictions, separability, additivity or monotonicity assumptions. For instance, the Generalized Roy model is not

53 For a recent book on the graphical approach to causality, see Peters et al. (2017). For related works on causal discovery, see Spirtes et al. (2001), Heckman
and Pinto (2015), Hoyer et al. (2009), and Lopez-Paz et al. (2017).
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identified by DoC because it requires assumptions such as separability. The same is true of the IV model. Separability cannot be
characterized by conditional independence assumptions generated by a DAG. We now demonstrate these points.

Table 19
The three DoC rules.

Rule 1:

If Y 1L T| (K, Z) holds in G, then P(Y | do(K),T, Z) = P(Y | do(K), Z)

Rule 2:

If Y 1L T | (K, Z) holds in Gg . then P(Y|do(K).do(T),Z) = P(Y | do(K),T, Z)

Rule 3:

If Y 1L T | (K, Z) holds in G¢ then P(Y|do(K),do(T), Z) = P(Y | do(K), Z)

T(Z)’

6.2. Using Do-Calculus to investigate the Roy model

We show the limitations of the DoC for identifying the Roy model. Table 20 is instrumental in our analysis. The first column
of Table 20 presents the DAG of the original Roy model, which is denoted by G. The second column displays the DAG G, which
suppresses the arrow arising from Z. The LMC of Z on DAG G, is Z 1L (Y, T). From Rule 2 in DoC, we obtain P(T | do(Z ))7= P(T |
Z). Summarizing: N

Gz =T 1L Z = by Rule 2 that P(T | do(Z)) = P(T | Z). (32)
Table 20
Using do-calculus to investigate the Roy Model.
Original DAG G Derived DAG G, Derived DAG G5 Derived DAG G5

()

z

Therefore, the modified Directed Acyclic Graph (DAG), G, enables us to assert that conditioning T on Z = z is equivalent to choice
T when we fix Z to value z. In the NR framework, this result is obtained by the exogeneity condition 7'(z) 1L Z, which states that
the instrument Z is independent of the counterfactual choice T'(z) and thus P(T|Z = z) = P(T(z)) holds. Instrument Z in DAG G,
is independent of both T and Y. This analysis also applies to Y. We can use (32) to obtain that P(Y | do(Z)) = P(Y | 2), which
means that conditioning on Z is equivalent to fixing Z. In summary, instrument Z is an external variable and the causal operation
of fixing is translated to standard statistical conditioning.

The third column of Table 20 displays the DAG Gz which suppresses the arrow arriving at T. The LMC of Z in G5 implies
Z 11 Y. By Rule 1 of DoC, we have that P(Y | do(T), Z) = P(Y | do(T)). Summarizing:

Gz =Y Il Z= byRule 1 that P(Y | do(T), Z) = P(Y | do(T)). (33)

This means that Z is statistically independent of Y when we fix T. This statement refers to the exogeneity condition Y (r) 1L Z or
the independence relationship Y 1L Z | T of the HM framework.

The last column of Table 20 displays the DAG G7, which suppresses the arrow arriving at T and arising from Z. Note that the
DAGs 67 - and Gz are the same. The LMC of Z is Z 1L (T,Y,V) which implies that Y 1L Z | T holds. Using Rule 2 of the DoC we
obtain:

sz =Y 1L Z|T = by Rule 2 that P(Y | do(T),do(Z)) = P(Y | do(T), Z). (349

Combining P(Y | do(T), Z) = P(Y | do(T)) in (33) with P(Y | do(T),do(Z)) = P(Y | do(T), Z) in (34) we obtain P(Y | do(T),do(Z)) =
P(Y | do(T)). This means that the probability distribution of the outcome Y when we fix both Z, T is the same as the counterfactual
outcome generated by fixing only the choice T. In the NR framework, this property refers to the exclusion restriction Y;(z, z) = Y;(¢, )
for all z,z’ € supp(Z).

These statements exhaust the analysis of the Roy model that can be performed using DoC. The method describes some key
properties of the Roy model, but the application of its rules alone cannot deliver identification of treatment effects. Indeed,
the assumptions necessary for securing the identification of treatment effects in the Roy model cannot be assessed by a DAG
representation alone. Identifying assumptions, such as separability or monotonicity, imposes restrictions on the functional form
of the choice equation which goes beyond the causal links described by a DAG.
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6.3. The Front-door model

To make a more positive statement about do-calculus, it is useful to compare the identification machinery of the DoC and HM
using a causal model when treatment effects are identified by DoC. We use the “Front-door model” of Pearl (2009a) to illustrate
the differences in the approaches.

The Front-door model consists of three observed variables T, M,Y and an unobserved confounding variable V. Treatment T
causes a mediator M, which in turn causes outcome Y. Table 21 presents the causal representations of the model.

The causal effect of T on Y in the Front-door model is identified. This result arises from the fact that the causal effect of 7 on
M is not directly confounded by V since conditioning on T blocks the effect of the confounder V on M. Thus, we can identify the
causal effect of M on Y conditional on T. The causal effect of T on Y can be evaluated as the compound effect of T on M and M
onY.

Table 21
Representations of the Front-door Model.

Variable Map Structural Eq. DAG LMC
v | M=o | v=rie) | a | zuvie
T | MD)={v} | T=f0.e) | | v Loz
M | MM)=(T} | M=[yT.ey) | | Mmuvir
v |

MY)={M,V} | Y =/f,(M,V,e) | ¥ gl(M,v)

Table 22
Using do-calculus to identify the causal effect of 7 on Y in the Front-door model.

Front-door Model G Derived DAG G Derived DAG Gy

Derived DAG Gy, Derived DAG Gz ), Derived DAG G737

We illustrate how to use DoC to identify the distribution of the counterfactual outcome Y (¢). To simplify notation, suppose that
all variables are discrete. The do-calculus is cumbersome. The method requires the five derived DAGs displayed in Table 22.

Identification for the counterfactual outcome is obtained by the following sequence of steps:

1. T 1L M in Gy holds, thus by Rule 2 we have that P(M | do(T)) = P(M | T).

2. M UTinGy holds, thus by Rule 3 we have that P(T | do(M)) = P(T).

3. M 1LY | T in G, holds, thus by Rule 2 we have that P(Y | T,do(M))= P(Y | T, M).

4

. Adding these results, we obtain:

“P(Y | do(M))= Y P(Y | T =t,do(M))P(T =t | do(M))

by Law of Iterated Expectations (L.I.E.)
=Y P(Y |T =1, M)P(T =1) by steps 1,2, and 3.
t

. Y L M| T in G5, holds, thus by Rule 2, P(Y | M,do(T)) = P(Y | do(M),do(T)).
Y LT | M in Gy; holds, thus by Rule 3, P(Y | do(T),do(M)) = P(Y | do(M)).

. Collecting these results, we have that P(Y | Z,do(T)) = P(Y | do(Z),do(T)) = P(Y | do(M)).
. Finally, we can use previous results to obtain the following equation:

© N o u

ZP(Y [do(T)=1)= Y P(Y | M =m,do(T) = t)P(M = m | do(T) = 1) by L.LE.
=Y P(Y | do(M)=m,do(T)=1)P(M=m | do(T)=1) by step 5.

=)' P(Y | do(M)=m)P(M = m | do(T) = 1) by step 7.
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= Z(Z P(Y |T={, M=m)P(T=t’)>P(M=m | T=1) by step 4.
m =/
6.4. The Front door model in the hypothetical model framework
We now investigate the same front-door model using the hypothetical framework. Table 23 displays the empirical and the

hypothetical Front-door models as DAGs. The bottom panel of the table presents the LMC for both models:

Table 23
The empirical and hypothetical Front-door models.

Empirical Model Hypothetical Model

LMC LMC
ViuM V1 (M, T)
T M|V T (MY, DV
MUV|T M U (T 0T
YL T|(V,M) Y 1L (T.T) | (V. M)

T 1L (T, V)

Recall that the counterfactual outcome in the hypothetical framework is denoted by the outcome Y conditioned on the
hypothetical variable T'. Identification consists of expressing the counterfactual outcome distribution Py(Y | T =), which is defined
in the hypothetical model, in terms of the observed distribution P,(T', M,Y), defined in the empirical model. The connection between
the probabilities of the hypothetical and empirical models is governed by the rules (16)-(17). The first rule states that, if Y 1L T |
(T, W) holds for any variables Y, f,T, W in the hypothetical model, then we can equate P,(Y | T = t,T=0'W)=P(Y |T=1¢,W).
On the other hand, Y 1L T | (i W) implies that Ph(Y | T=1T=r¢, W) =P,(Y | T =1t,W). Thus, we seek to find independence
relationships of the hypothetical model that contain T and T.The useful relations are Y 1L T | (M,T) and M 1L T | T.5 It is also
the case T 1L T holds as T is externally specified (exogenous) and does not cause T. We can then apply rules (16)-(17) to generate
the following probability equalities:

Y L T|T.M) = P(Y|T.T=1{,M)=P(Y|T=1,M). (35)
M UTIT = P(M|T=0T)=P,(M|T=1). (36)
TUT|T = P(T={|T)=P(T=1). (37)

The causal effect of T on Y of the Front-door model is identified through the following logic:

P(Y | T=t)=) P(Y |mT=tT=t)Py(m|T=rT=t)P,(T="|T=t). (38)
t'.m

=Y P(Y|mT={)P(m|T=10)P,(T="). (39)
t'.m

Eq. (38) is a sum of probabilities defined in the hypothetical model by application of the law of iterated expectation over T and M.
Eq. (39) replaces each of the hypothetical model probabilities with empirical model probabilities listed in Egs. (35)-(37).

The identification of the counterfactual outcomes in the Front-door Model stems from the three independence relationships
in (35)-(37). These independence relationships illustrate two properties that are at the core of the identification result. The first
property is that the independence relationships alternate between T and T in the positions of conditioning variable and independent
variable on the right-hand side. We term this property as alternate conditionals. The second property is that the sequence of
conditioning variables on the right-hand side of (35)—(37) form a sequence Y — M — T that starts at the targeted outcome Y
and arrives at the treatment using the variable M to bridge these variables. We term this use of M as the bridging property.

Identification is secured whenever the properties of alternating conditionals and the bridging properties hold. We illustrate these
ideas for the complex mediation model in Table 24. The model has three observed mediating variables M, M,, M; (instead of M)
and three unobserved, confounding variables V;, V,, V5 (instead of V).

54 The first independence condition is due to the LMC Y 1L T | M and (f, M) LL (T, V). The second one is due to the LMC of M.
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Table 24
Using HM to identify counterfactuals.

Directed Acyclic Graph of the Empirical Model

The following conditional independence relationships hold for the hypothetical model:

Y UL T| (T, My, My, M) = P(Y|T.T=1, M5, My, M) =P,(Y | T =1, M3, My, M). (40)
My WL T|(T.MyMy) = Py(M;|T=1,T,My, M) = P,(M; | T =1,M,, M,). (41)
M, 1L T|(T,M,) = P (M, | T.T =1, M) =P,(M, | T =1, M))). (42)
M, UL T|T =P, (M I T=1,T)=P,(M, | T=1). (43)
TUT|T = P(T=1|T)=P,(T=1). (49

The set of independence relationships (40)-(44) exhibits the alternate conditionals property. The first relationship is conditioned
on T, the second on T, followed by T and so on. The bridging property also holds. The right-hand variable of each independence
relationship provides a bridging sequence: Y » M; —» M, » M, » T. The law of iterated expectations and independence
relationships (40)—(44) enable us to express the counterfactual probability P,(Y | T) as:

Hypothetical Model P (Y | T =1) = 2t mymym; An - By Cp - Dy - Ey.
where: Ay =P,(Y | my.my.m T =1, T =1).

B, = Py(Msy=my | my,m, T =t',T =1).
C,=Py(My=my | m,,T =0T =t).
Dy =PyM,=m |T=¢T=rt).

E,=P,T =1 |T=0.

Connection rules (16)-(17) enable us to translate hypothetical probabilities into the empirical probabilities as listed in (40)-(44).
The resulting identification equation is presented below. It displays the alternative pattern of values ¢ and ¢ in the same fashion as
the identification equation of the Front-door model:

Empirical Model  P.(Y(T)) = Xy . sy m; Ac " Be* Co " D, " E,.
where: A, =P,(Y | m3,my,m;, T =1").
B, = P,(M3 =m3 | my,m, T =1).
C,=P,(My=my | m.T=1).
D,=P,M,=m |T=0.
E,=P(T =1).

6.5. Comparing DoC and HM frameworks
Both DoC and HM employ structural equations and describe causal models with both observed and unobserved variables. They
clearly separate the task of defining counterfactuals and identifying them. Both frameworks enable analysts to disentangle the tasks

of causal analysis in Table 1. Both frameworks employ economic theory to define causal models (Task 1) and the structural equations
that underlie the approach.
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There are, however, some distinct practices in DoC and HM. When DoC fixes a treatment variable, it eliminates the equation for
T in constructing the joint distribution of variables. All of the DoC analyses are done within the empirical model so generated.

HM does not eliminate the equation for the treatment variable. Instead, it adds a hypothetical variable. The presence of both
treatment and hypothetical variables in the HM framework facilitates the study of the causal effects. HM can be used to readily
analyze both external manipulation and conditioning, such as the treatment on the treated, whereas this is outside the scope of DoC.
It facilitates the examination of causal inference for direct and indirect effects in which the hypothetical variable replaces some but
not all the treatment inputs of the structural equations. DoC invents new rules to undertake those tasks for each combination of
conditioning variables.

The identification of causal effects (Task 2) requires connecting the hypothetical model with the empirical model. HM uses two
statistical implications to connect the probability distributions of the hypothetical and empirical models. HM analyses remain within
the realm of standard statistical theory and do not require the invocation of non-probabilistic DAG-based rules.

The DoC machinery consists of three DAG-based rules. It constructs a series of possible DAGs. Each of them constitutes a
causal model that modifies the empirical model. Each modification of the empirical model corresponds to introducing a new set of
conditional independence relationships. The search for the combinations of DAGs and conditional independence relationships that
are required to identify counterfactuals grows exponentially. An algorithm has been developed to perform this task.>> Calculations
with HM are simpler than those based on DoC. They rely on a single modification of the original DAG, as encoded in the hypothetical
model, instead of a growing list of DAGs to implement the three guiding rules of DoC.

DoC relies critically on DAGs, conditional independence relationships, and a special set of rules. The HM machinery remains
within the statistical realm to make statistics converse with causality. In doing so, the method is capable of accommodating
assumptions that explore the rich variety of functional form restrictions, distributional assumptions, and cross-equation and
cross-variable relationships that lie outside the scope of DoC.

7. Simultaneous causality

The Generalized Roy model is usually expressed as a recursive model.>® However, simultaneous causality is a property of many
economic models. Examples of such models include those for social interactions, general equilibrium, Walrasian market clearing,
or simultaneous play in models of industrial organization, which are staples of economic theory (see, e.g., Mas-Colell et al., 1995;
Tamer, 2003). Such models are ignored in discussions of causality in the NR literature. The NR approach invokes the Stable Unit
Treatment Value Assumption (SUTVA), which excludes the possibility of interactions among agents.”” Such interactions are usually
termed “confounders” and are treated as a problem rather than a source of information about economic and social behavior.

It is instructive to consider these models because they challenge the approaches used in the statistical literature but are
easily analyzed by rigorous econometric causal models. The pioneering econometric models studied by the Cowles Commission
featured simultaneity.>® Haavelmo’s (1943) paper explicitly analyzed causality in a simultaneous system. Many of the core ideas in
simultaneous equations models are ignored or remain unknown to the followers of the statistical approaches, which rely on recursive
formulations, which are considered to be essential features of causal models.

Simultaneous causality is an essential feature of many structural equation econometric models.>® The LISREL model of Joreskog
(1973) allows for simultaneity, measurement error and latent variables proxied by measurements as discussed in Section 4.

The structural systems typically consist of two parts: (a) an autonomous structural system expressed in terms of latent variables
(Bollen, 2002) and (b) a measurement system. The measurement system proxies the latent variables using observed measurements.
The first part of the structural system consists of structure for person i:

Bny=a,+ Ty +o; (45)

where ®;, n;, x; are vectors of latent variables. The measurement system consists of vectors of measurements:

yi =a,+A,n; +¢ (measurement for #,)
Measurement:
X, =a,+Y, +§ (measurement for ;)

where ¢;, and &; are vectors of latent variables. These models have been extended to time series and panel data settings (see
e.g. Goldberger and Duncan, 1973; Bollen, 1989; Hansen and Sargent, 1982).

Bollen and Pearl (2013) exposit this system of equations as a causal model with simultaneity and show how various measurement
systems use factor models and other approaches to proxy the latent variables which may be the variables measured with error or
omitted variables, like ability in an earnings equation, or technical efficiency in a production function. They dispel many misguided
criticisms of the structural approach lodged by advocates of the NR approach. These systems are equipped to use cross-equation

55 See Pearl (2009a).

56 See, however, Heckman (1978), Brock and Durlauf (2007).
57 See, for instance, Imbens and Rubin (2015), Holland (1986).
58 See, e.g., Koopmans et al. (1950).

59 See Goldberger (1972), Haavelmo (1944, 1943), Koopmans et al. (1950), Goldberger and Duncan (1973).
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restrictions and covariance restrictions to secure the identification of causal parameters. Hansen and Sargent (1982) is an example
of this approach applied to time series models.

This literature is rich and we lack the space to exposit it thoroughly. We note that as previously discussed linear equation versions
of these models provide a framework for proxying V. It is also an approach for studying mediation where analysts can study how
interventions on y; percolate through equation system (45). Schennach (2020) summarizes a large literature on nonparametric
factor and proxy models.

Instead of a general exposition of these systems, we refer the reader to Bollen and Pearl (2013) and consider a simple two-
equation simultaneous equations model of the sort exposited by Haavelmo (1943). We consider a system of two autonomous
(structurally-invariant) causal equations:

Y, =gy, (Y2, X1, Uy, €)) (46)
Y, =gy, (Y, X5,Up,60) Uy MU, (47)

We use this system to demonstrate how causality can be analyzed in simultaneous systems. Again, ¢, and ¢, are mutually independent
error terms that are also independent of U, U,, X, and X,. To conserve on notation, we keep ¢, and e, implicit in what follows.

This system of equations represents two maps: gy,: (Y2, X;,U}) = Y38y, (Y1, X,,U;) = Y,. Y| and Y, could be actions of a pair
of interacting agents.®® To simplify the discussion, we assume that both equations are twice continuously differentiable. This is a
convenience and not a necessity. The model of Egs. (46)-(47) is treated in a special way in the DoC approach. Models with multiple
simultaneous equations are standard in the literature (see, e.g., Koopmans et al., 1950; Theil, 1958, 1971; Fisher, 1966; Goldberger
and Duncan, 1973; Bollen, 1989).

As previously noted, Egs. (46) and (47) are assumed to be structural, i.e., invariant under manipulations of their arguments,
so they are stable, autonomous maps. Policies consist of manipulations of their arguments. Autonomy is one part of the SUTVA
assumption in the NR model.®!

In the classical model of market clearing equilibrium, Y, is price; Y, is quantity and X, X,, U, and U, are causal determinants.
Egs. (46) and (47) are generated by thought experiments varying the arguments and tracing out the outcomes. Thus, Y; in (46) could
be the market price that is consistent with hypothetical values Y,, X, U,. (47) is the analogous relationship for market quantity Y,.
The addition of unobserved (by the economist) variables U, and U, is made in anticipation of empirical applications. In the peer
effects literature, Y, and Y, are behaviors of two interacting agents (e.g., smoking or drug use).

In terms of our previous notation, the variable set for the empirical model is 7, = {Y;,Y,. X, X,,. U, U, }. M (Y)) = {Y>. X,. U}
and IM,(Y,) = {Y}, X,,U,}. The empirical and hypothetical models are displayed as DAGs in Table 25 given by®*:

Table 25
Empirical and hypothetical causal models.

Empirical Model Hypothetical Model

The LMC condition does not apply, so that the Bayesian net approach is not useful in this context. “Fixing” and the hypothetical
model approach readily extend to a system of simultaneous equations for Y, and Y,, whereas the fundamentally recursive methods
based on DAGs require special treatment.

7.1. Completeness

“Completeness” assumes the existence of at least a local solution for Y, and Y, in terms of (X, X,,U,,U,):
Y =¢1(X1’X2,U15U2) (48)
Y, = ¢r(X1, X5, Uy, Uy). (49)

These are reduced form equations (see, e.g., Koopmans et al., 1950; Matzkin, 2008, 2013). They inherit the autonomy properties
of the structural equations. Completeness is a property that guarantees the conceptual possibility of simultaneity, which is not
necessarily guaranteed. If it fails, the existence of consistent solutions to (46) and (47) is not guaranteed. Nonetheless, autonomous
correspondences may still exist, and they can be used to make set-valued causal inferences.®

60
61
62

In the literature on peer effects, simultaneous equation problems are relabeled as “reflection problems”. See Moffitt (2001), Manski (1993).
The other part is the absence of simultaneity or general equilibrium effects. See Heckman (2008a).

U, and U, are reciprocally related.

63 See, e.g., Heckman (1978), Tamer (2003), Mas-Colell et al. (1995), Quandt (1988).
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The causal response of ¥, on Y; when Y, is fixed at y, is generated by

Y (n) = gy, (02, X, Uy).

Symmetrically, the causal response of Y, on ¥, when Y, is fixed at y, is generated by:

Y,(01) = 8y, X, Uy).

The relationships (46) and (47) can be defined even if they might not be identified or estimated. The completeness assumption
says that there are values of X, X,,U,, U, that generate values of Y,,Y, consistent with (46) and (47). These involve hypothetical
variations. For certain models, no such sets of variables may exist, and the models are termed incomplete.

7.2. Can we hypothetically vary Y, and Y,?

If Y, and Y, are simultaneously determined, the notion of varying Y, to change Y, may seem impossible. Pearl (2009b) maintains
his focus on recursive models and addresses this problem in a very special way by assuming structural invariance and “shutting
one equation down”, assuming the rest of the system remains unchanged. Thus, for example, Eq. (47) is suspended, but (46) is
maintained. This is consistent with the logic of do-calculus, which eliminates relationships from systems, assuming invariance of
the remaining system. He sets Y, to a constant that can be manipulated in (46). This thought experiment converts a simultaneous
system into a recursive system with all other equations assumed to hold as before. After Y, is fixed, the do-calculus can be applied.

This approach is cumbersome and strains credibility in many economic contexts (e.g.,in a two person world, person 1 influences
2, but not vise versa), but it is logically possible.®® It is unnecessary if exclusions in (46) and (47) are used. To show this, we define
exclusion of X, in (46) as ag% = 0 for all values of Y,, X, X,,U,.%® Exclusion of X, in (47) is defined as l;iyz = 0 for all values
of Y}, X, X,,U,. Implicit is the assumption that components of X, and X, can be varied. Under completenesls and exclusion X,
from (47), by the chain rule, the causal effect of Y, on Y; is

dagy, aY, /oY, o¢, [op,
W, 0X, [ 0X, T X, / X,

We may define and identify the causal effects for Y; on Y, in an analogous fashion. Variations in X; and X, that respect
completeness define the causal parameters when the components of X; and X, can be independently varied.®® No implausible
“shutting down” of any equation in a system while assuming autonomy (structural invariance) of the remaining system is required.

This logic is now standard and is the basis for an estimation technique, “indirect least squares” (see Theil, 1958 and Tinbergen,
1930, 1939). It demonstrates the flexibility of the econometric approach for defining and identifying causal parameters outside
the narrow world of DAGs. Fisher (1966) gives a range of approaches for identifying systems like (46) and (47) and more general
versions using restrictions within and across equations for observables and unobservables.

7.3. Econometric mediation analysis

We have already discussed mediation analyses in recursive models. These notions extend to models with simultaneity. Under
completeness, reduced form (48) characterizes the net effect of a policy change X,:
Yy 9 (Xy, X5,Uy, Uy)
X, X, ’
Following Klein and Goldberger (1955) and Wright (1921, 1934), we can conduct “mediation analyses” that address problem
P-2 and trace the impact of an externally manipulated X, on Y;, both through its direct effect on (46) and its indirect effect through
Y,:

(50)

oY, [ 98y Y, N Jgy, _09(X, Xp,Uy,Uy)
X, \ oy, X, ox, 0X, :
N—— Y—— ~——

From From Reduced  From Structure
Structure Form

Direct effect
Indirect effect
through Y,
This approach can be readily applied to recursive systems and general multiple equation systems. Reliance on linear equations,
while traditional in the literature, is not necessary and nonparametric approaches are available.®”

Mediation analysis is a staple of econometric policy evaluation to examine all channels of influence of variables (see, e.g., Theil,
1958). All of the tools used to analyze simultaneous equations are available to estimate these models (See e.g., Amemiya, 1985;
Fisher, 1966; Matzkin, 2007). Klein and Goldberger (1955) is a classic example of dynamic mediation analysis in a Keynesian model
of the time series of consumption and investment in the U.S. economy.

64 In a market for a good, shutting down the supply equation would likely alter the properties of demand curves as agents would face a different market
structure altering their expectations. Construction of a theory consistent counterfactual world would entail such considerations.

65 Or more generally, X, is not an argument of 8y,

66 The completeness condition is part of the hypothetical model thought experiment. In some contexts it may be ruled out as not credible.

67 See Matzkin (2008, 2015, 2013) for nonparametric analyses of such systems.
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8. Conclusion

This paper presents the basic framework of the econometric model for causal analysis. We discuss the definition of causal
parameters and approaches to their identification within it. We consider two recent approaches to causality that are used in the
non-economic literature on causal inference and their relationship with the econometric approach.

The econometric model is based on clearly stated and interpretable models of behavior that characterize the lessons of
economic theory and allow for testing it, for synthesizing evidence on it from multiple studies, constructing credible policy
counterfactuals, including forecasting policy impacts in new environments and forecasting the likely impacts of policies never
previously implemented. The econometric approach delineates the definition of causal parameters, their identification and their
estimation as three separate tasks.

The two competing statistical approaches are: (a) the Neyman-Rubin (NR) approach rooted in the statistics of experiments, and
(b) the do-calculus (DoC) that originated in computer science. Both address some of the same problems tackled by the econometric
approach. Each has important, but different, limitations. Neither has the flexibility or clarity of the econometric approach.

All start from the basic intuitive definition of a causal effect as a ceteris paribus consequence of a change in inputs on outcomes,
where the change can be a policy. However, the rules for constructing and identifying counterfactuals are very different in these
approaches.

The do-calculus (DoC) invokes a special set of rules for identifying causal parameters that lie outside of probability theory and
that use a limited class of identifying assumptions for behavioral equations. It relies heavily on recursive directed-acyclic-graphs
and assumptions about conditional independence relationships. Its rigid rules preclude the use of many traditional techniques of
identification and estimation.

The Neyman—-Rubin (NR) approach eschews the benefits of structural equations and many fruitful strategies for their identifica-
tion. Reflecting its origins, it casts all policy problems into a “treatment-control” framework. Randomized experiments rather than
thought experiments are foundational elements in this approach. In some versions, it conflates issues of definition with issues of
identification. Its lack of reliance on structural equations with explicit links to theory and explicit analyses of unobservables, makes
it difficult to interpret estimates obtained from it to analyze well-posed economic questions with it using the large toolkit of modern
econometrics, or to synthesize studies within a common framework.

Econometrics has a rich body of theory and tools to address policy problems. Applied economists would do well by using the
impressive set of conceptual tools available from econometric theory.
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